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A B S T R A C T

This paper proposes an innovative method of replicating the multi-modal public transport system in Singapore
with high precision using smart card database. It replicates the operation of public transport system with known
exogenous passenger demand and provides many operational details, including passenger inter-modal trip
chains, operational timetable, and detailed transfer behaviour. The paper elaborates on the methodology of the
replication including data cleaning, filtering, processing and converting the collected data to meaningful in-
formation such as bus journey trajectories and metro system timetable. Thereafter, actualised passenger trip
chains are directly assigned to the replicated public transport supply. The resulting replication covers almost
96% of trips made in public transport in Singapore. It provides solid quantitative information on several aspects
to support decision making, including precise temporal and spatial travel demand analysis, transfer pattern
analysis, traffic condition investigation and bus utilisation analysis.

1. Introduction

With the progressive growth of travel demand in cities, public
transport systems have become life lines for daily commute.
Unfortunately, public transport infrastructures consume large financial
investments and hence, impact daily operations. In this respect, public
transport modelling is crucial in providing a comprehensive under-
standing of certain scenarios to decision makers so that they could re-
spond accordingly to improve the service quality. Conventional ways of
public transport modelling include the four-step, activity-based, and the
emerging agent-based approach. Most of them depend on data from
surveys and help decision makers understand macroscopic situation in
the current system or future scenarios so that the public transport
system could be optimised accordingly.

The widely implemented smart card systems collect precise in-
formation on passenger trips in public transport systems. With high
penetration rate, such smart card database, as well as other big data in
transportation systems provide rich information on passenger patterns
and operational details such as exact boarding and alighting time and
location, passenger inter-modal trip chains. It brings in a new oppor-
tunity to replicate the current situation so that many details of actual
operation could be revealed. With the collected detailed information,
replications of public transport systems could be created. Such re-
plications, compared to conventional models, provide better, detailed
and comprehensive operational information at microscopic level which

could be directly used for improving the existing operation of public
transport systems. However, such approach lacks the capability of
forecasting future scenarios. Therefore, the application of such ap-
proach is to describe current scenario and should be complemented
with conventional approaches to conduct prospective analyses to sup-
port decision making. This research aims to replicate the public trans-
port system in Singapore using the smart card database. The resulting
replication is expected to provide operational details at microscopic
level and be utilised by decision makers for different aspects, including
understanding passenger public transport travel behaviour, identifying
operational bottlenecks.

In this paper, conventional public transport modelling approaches
and recent research using smart card data are reviewed in Section 2.
The data sources, development environment and methodology of the
replication process are introduced in Section 3. Results and applica-
tions, as well as a comparison between the proposed replication and
conventional models are presented in Section 4. The last section draws
a conclusion from the study while providing the scope for future re-
search.

2. Literature review

Throughout the history of transport modelling, the most prominent
approach has been the four-step model, which remained mostly un-
altered from the 1960s (Ortúzar and Willumsen, 2011). It provides a
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systematic framework for modelling both private and public transport.
As its name suggests, this classic model is presented as a sequence of
four sub-models: trip generation, distribution, mode choice, and as-
signment. Some advanced approaches handle the four steps simulta-
neously instead of following the certain sequence (Lohse et al., 1997;
Vrtic et al., 2007). Because travel is derived demand due to change of
activities undertaken at different locations by individuals or groups, a
lot of research has been done to review the relationships between travel
and activities as well as their interactions with individuals or house-
holds. The relationship between certain activities and their constraints
on time and location was proposed by Hägerstraand (1970). Recker
et al. (1986a,b) examined the travel pattern within households and
developed a model which enumerates feasible activity-travel patterns
and selects the ones most likely to be chosen by other household
members. The dynamics of activity patterns and their influence to
travel was investigated by van der Hoorn (1979, 1983) using multi-day
activity diary. The activity-based models have generally improved the
quality of modelling with the inclusion of relationships between dif-
ferent trips by a sequence of different activities and interactions be-
tween individual and other household members. A further extension of
such approach is the agent-based approach (Helbing and Balietti, 2012)
which involves more details compared to the others including in-
dividual characteristics and interactions between different agents. The
agent-based models appear to be ideal for studying the inter-
dependencies between individual activities.

All three models, namely four-step, activity-based and agent-based
models as mentioned above are widely used for modelling both general
transport systems and public transport systems. However, they have
certain limitations. First of all, large amount of surveyed data is nor-
mally required. The intensive requirement on manpower, time and fi-
nancial investment limits the coverage of the survey and hence influ-
ences the data quality. For example, the Household Interview Travel
Survey (HITS), a national-wide survey in Singapore, is conducted every
4 or 5 years and covers around 10,000 households per survey. The latest
HITS 2012 lasted for 1 year from June 2012 to May 2013 (Land
Transport Authority Singapore, 2013). Also, the mathematical models
used by the conventional approaches provide only estimated results and
require careful calibration. For example, the gravity model commonly
applied in the distribution sub-model in the four-step approach and the
Monte Carlo process used by the activity-based models require careful
calibration (Ortúzar and Willumsen, 2011). Improper model calibration
may lead to biased results. Thus, the produced results, with much es-
timation involved, provide a macroscopic analysis on actual operations
of transport systems wherein many details including demand analysis
during specific times of day cannot be revealed.

As introduced in Section 1, the implementation of smart cards in the
public transport system provides large amount of precise information
and enables many new methods for research in public transport (Bagchi
and White, 2005; Pelletier et al., 2011). With the information-rich da-
tabase collected by smart cards, actualised passenger trips and real
travel ODs can be extracted (Munizaga and Palma, 2012) and passenger
travel behaviour can be better understood (Agard et al., 2006; Du et al.,
2017). Furthermore, with large amount of data collected, many op-
erational details of public transport systems can be revealed. For ex-
ample, passengers' spatial-temporal distribution within public transport
system can be extracted (Sun et al., 2012). Such information can be
further used to identify operation bottlenecks and help to improve the
quality of service. Besides the applications in public transport, the
collected smart card database could also be used to evaluate general
operation of transportation systems (Liu et al., 2016). However, studies
(Bueno et al., 2017; Hamre and Buehler, 2014) show that to conduct
prospective analyses, the application of smart card data still needs to be
complemented with traditional approaches. Recent studies on both
conventional and big data-oriented research show a convergence and
the joint effort of both approaches result in mutual benefits (Chen et al.,
2016).

This research aims to develop methodologies to fully utilise the
collected smart card data for replicating the actualised public transport
system with several operational details. The resulting replication is
expected to directly contribute towards a concrete understanding of the
current condition of the public transport system.

3. Replication of the public transport system in Singapore

A smart card database was provided by the Land Transport
Authority (LTA) of Singapore. The database contains substantial in-
formation on all trips made with smart cards from 1 August 2013 to 31
October 2013, altogether for 92 days. A total of 517,203,124 trips were
recorded for both bus and metro systems, on an average more than 5.5
million trips per day. The smart card system in Singapore is very ad-
vanced. It has a very high penetration rate of 97% while the remaining
3% trips paid by cash on-board (Prakasam, 2008). The system requires
passengers to check in and out of the system. This requirement is far
from being the usual case worldwide and can be found in some cities
(e.g. Singapore and Beijing). The check-outs are of great importance to
the replication because they complete passenger information including
alighting time and location. It also enables the identification of pas-
senger trip chains by considering alighting time and boarding time to
the next trip. With high penetration rate and comprehensive informa-
tion collected, the database could sufficiently represent the travel pat-
terns of public transport users. Based on this condition, the exact data
processing and replication methodology were developed according to
the smart card database and other complementary data.

To reproduce the operational conditions of Singapore's public
transport system, this research uses a direct assignment method to as-
sign all collected complete passenger trip chains to the public transport
network. PTV Visum was used for the direct assignment. With direct
assignment, passenger trip chains are not assigned to routes estimated
by behaviour models, rather, each segment of the trip chain is directly
assigned onto bus or metro line route with known check-in and check-
out information. Different from other methods requiring demand of
each origin-destination (OD) pair, direct assignment requires complete
information on individual trip chains, including starting time and stop,
ending stop, line routes taken of each segment of trip chains. As a result,
the original database needs to be further processed to provide in-
formation on passenger trip chains and exact operational trajectories of
buses and trains.

3.1. Data source

The smart card system in Singapore requires passengers to check in
for boarding and check out for alighting in both bus and metro systems.
Each trip is recorded in the database based on successful check-in and
check-out. Such mechanism provides complete and accurate informa-
tion on stop and time where passengers board and alight. Table 1 lists
all data types collected by the smart card system. They can be grouped
into three categories, namely identifications, ride information and
service information. The identifications include journey ID and card ID.
The journey ID is unique for each passenger trip chain in the public
transport system. Multiple trips within one trip chain share the same
journey ID. The smart card system considers consecutive trips with
transfers less than 45min as trips made for a same journey. Card ID and
passenger type (student, adult or elderly people) are also collected as
passenger information. The ride information records specific data on
each trip. Mode of service (metro or bus), boarding and alighting stop,
check-in time, ride time and distance are all recorded. Additionally, for
all trips made with buses, the bus service line and direction, with bus
plate number and departure sequence number are also collected. The
combination of this data could be used to identify unique bus journeys
of certain days.

The smart card database on its own does not provide complete in-
formation for replicating an entire public transport system. For
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example, road network geometry is needed as a base for public trans-
port network. Operational details such as walking time from fare gates
to platforms within metro stations are also required. The other required
information is either provided (e.g. geography information system (GIS)
shape file, line route stop sequences) or surveyed (e.g. travel time be-
tween stops of the metro system, walking time between fare gate and
platforms) (Zhou et al., 2015). Table 2 lists all data involved in the
replication work and their sources. The collected data sets were ad-
justed to the same time horizon (August to October 2013) to fit the
provided smart card database.

3.2. Development environment

The replication work was conducted mainly on a server running
Windows Server 2012 R2. The server is equipped with two Intel Xeon
CPUs (E5-2640 v3 @ 2.6GHz) and 128GB RAM. Multiple software
programs were used. PTV Visum is the main tool used for the

replication and visualisation. Direct assignment is also conducted using
PTV Visum. Microsoft SQL Server 2014 is deployed for database man-
agement. Python programming language is used for data processing and
batch-process work in PTV Visum.

3.3. Data cleaning and filtering

A small amount of erroneous data was detected in the database. Two
main types of errors were discovered. First, a few thousand lines of data
were found containing negative travel times. Due to the small share,
such data was removed. Second, some other data sets were found to
have recorded non-existing boarding or alighting stops of the recorded
bus line route. The erroneous data was corrected using valid informa-
tion on correct boarding or alighting stops, service route and travel
distance.

The provided database covers travel patterns for three consecutive
months which includes weekdays, weekends, school holidays, public
holidays, and days with special public transport operation. A pre-
liminary analysis of the database showed that the travel behaviour on
Fridays, weekends, holidays and days with special public transport
operation deviates significantly from regular weekdays (Monday to
Thursday). Hence, aiming at the most crucial situation during normal
weekdays, only data records from 41 days (Monday to Thursday
without special events) were retained and further utilised for the sub-
sequent steps.

3.4. Replication of public transport supply

The fundamental principle to replicate the public transport supply is
to convert the individual trip data records into bus and metro opera-
tional data records.

While boarding on or alighting from buses, passengers are required
to check in and check out inside the vehicles. The collected timestamps
could be used to estimate arrivals and departures of buses. When pas-
sengers enter or leave the metro system, they check in and check out at
fare gates, but not inside trains. The collected timestamps compared to
the train arrivals or departures, contain walking time between fare
gates and platforms and waiting time at platforms. Hence, the time-
stamps collected by metro system cannot be used to estimate train ar-
rivals or departures. As a result, the replication of bus and metro sys-
tems were conducted in different ways. For bus system, the operational
information was directly retrieved from the check-in and check-out
data. For metro system, smart card data was complemented with sur-
veyed data (e.g. walking time between platform and the fare gate) to
speculate the operational information.

3.4.1. Bus system
As introduced previously, the combination of bus service number,

direction, plate number and departure sequence number could be used
to identify unique bus journeys of the day. Thus, passenger check-in and
check-out information could be categorised per bus journey. Since the
check-in and check-out in buses are accomplished on-board, the time-
stamps of all passengers boarding or alighting certain buses at parti-
cular stops could be used to identify the arrival and departure times and
then extended to compile timetables (Michalski et al., 2016). In some
case, check-in and check-out data is not sufficient or not available due
to lack of boarding or alighting passengers. As a result, some arrival and
departure times of buses at certain stops were not directly available.
Such missing information was interpolated by linear regression using
valid trajectories from other bus journeys covering the same sections
during similar period of day. Fig. 1 shows an example of bus journey
trajectories of a bus line route in the morning. There were five bus
journeys presented. Along the five trajectories, there are dots presented
by triangles or squares. Those dots represent the arrival and departure
times of buses at certain stops. The ones with squares are calculated
from the smart card database while the triangles are estimated. The

Table 1
Collected trip information by the smart card system in Singapore.

Category Data type Remarks

Identifications Journey ID
Passenger
information

Card ID and passenger type

Ride information Mode Metro or bus
Origin Stop ID
Destination Stop ID
Check-in time Day and time of day
Ride time Time difference between

check-out and check-in
Distance Absolute travel distance

along this trip
Service information (for

buses only)
Line information Service number and

direction
Bus information Plate number and bus

departure sequence number

Table 2
Data sources for replicating the public transport system.

Category Type of data Source and collection time

Network
geometry

Road network • Provided GIS shape filesa,
2012

Stop coordinates • Provided GIS shape files,
2012

• OpenStreetMap, 2014
Public transport

supply
Stop sequences • Provided datab, 2014

• Data mining from the smart
card database, 2013

Metro and bus time
profiles

• Departure headways

• Travel times between
stops

• Dwelling times

• Field survey, 2015

• Data mining from the smart
card database, 2013

Transfer times

• Stop-to-stop walking
time (bus system)

• Gate-to-platform
walking time (metro
system)

• Field survey, 2015

• Google Maps, 2015

Public transport
demand

• Complete personal
trip chains

• Stop-to-stop OD
matrices

• Data mining from the smart
card database, 2013

a The GIS shape file is provided by the Singapore Land Authority.
b The data is provided via LTA Singapore's DataMall (Land Transport Authority

Singapore, 2016).

X. Liu et al. Journal of Transport Geography xxx (xxxx) xxx–xxx

3



dots in the figure are linked with either solid lines or dotted lines. The
solid lines represent calculated trajectories and the dotted lines are
interpolated.

The interpolation of travel times was done using Eqs. (1) and (2).
For example, the arrival time of stop 2 for bus journey number 1 was
originally unknown. The average travelling time between stop pair 1
and 2, stop pair 2 and 3 can be calculated by given data of other
journeys. The travelling time between stop 2 and stop 3 is about 1.6
times of that between stop 1 and stop 2. Thus, the travelling time be-
tween stop 1 and stop 3, which is 6min and 59 s, was divided into 2min
and 39 s and 4min and 20 s. Unknown dwelling times were estimated
using the average valid dwelling times from the same line route with
similar period of day (15-minute interval).

 + =+ − − +T T Tj
i i

j
i i i i

j
( , 1) ( 1, ) ( 1, 1) (1)




=

∑
+

−

=

+

−T

T N

j
i i

j
i i

h

N T

T( , 1)

( 1, )

1

i i
h

i i
h
( , 1)

( 1, )

(2)

where:
(i− 1,i) are two consecutive stops along bus line route;


+T j
i i( , 1) is the interpolated travel time of bus j from stop i to stop

i+1;
+T j

i i( , 1) is the calculated travel time of bus j from stop i to stop i+1;
N is the total number of data records with calculated travel times

from stop i− 1 to i and from i to i+1 within similar period of day (15-
minute interval) of the travel time to be estimated.

The operational trajectories were calculated for all bus journeys
within the 41 chosen weekdays. These disaggregated results exhibit a
comprehensive view on bus operations. But they also raised the com-
plexity of the public transport network for direct assignment. The dis-
aggregated trajectories were first used for direct assignment. However,
due to the complexity of route searching of direct assignment, the as-
signment could not be finished. To reduce the complexity, all bus
journeys were grouped into 15-minute intervals for evaluating the op-
eration conditions based on the travel times over the entire journeys.
These intervals were again aggregated into six different periods (early
morning from 3:00 to 6:15, morning peak from 6:15 to 8:45 am, inter-
peak from 8:45 am to 16:15, afternoon peak from 16:15 to 19:30, early
evening from 19:30 to 22:00 and late evening 22:00 to 3:00 of the next
day) based on the evaluation to further reduce complexity (Michalski
et al., 2016). For each of the six periods of day, averages of the travel
times between stops and the dwelling times at each stop of each line
route were used to define the bus services' time profile. The departure
headways were calculated based on the 15-minute aggregation of ori-
ginally generated bus trajectories. Thus, all bus services were replicated
from the smart card database and implemented on top of the existing
road network.

3.4.2. Metro system
Different from buses, check-in and check-out of metro system take

place at fare gates. Thus, arrival and departure times of trains cannot be
directly calculated using the check-in and check-out times in the da-
tabase. Data mining was applied to replicate the timetables for metro
system which consisted of 9 service lines in 2013. Because alighting
passengers always check out in a relatively shorter period, a peak is
observed in the plot of alighting passenger volume vs. time. By in-
vestigating the check-out passenger volume, the arrival of trains could
be estimated. However, checking-out passengers at a metro station
could alight from different line routes in the metro system. To identify
the direction of arriving trains which the checking-out passengers were
taking, corresponding boarding information of each trip was used to
identify the directions of arriving trains so that the check-out in-
formation could be used to estimate train arrivals. Fig. 2 illustrates an
example of resulting passenger check-out peaks at a station on a certain
metro line route.

Parallel to the data mining work, a survey (Zhou et al., 2015) on
metro operations was conducted to collect detailed information on
departure headways, travel times between stops, and train dwelling
times at stops. Walking times between different platforms as well as
between platforms and fare gates were also measured for representation
of the transfers inside the metro system. The survey was conducted for
three different periods of day (morning peak, off peak and afternoon
peak) over the entire metro system. Actual train arrival times were
calculated by offsetting the peaks by the surveyed walking time from
the platform to the fare gate.

There are some limitations in the estimation of train arrivals at
stations. If there were only a few arriving passengers, the arrival would
not be detected. The arrivals could also be wrongly detected if there
were passengers who did not exit immediately. With the estimated
arrivals from the succeeding and preceding stops and surveyed travel
times, the mistaken arrival estimations were either eliminated or in-
terpolated. Table 3 shows an example of the replicated train arrival
timetable. The times with asterisks were interpolated with similar ap-
proach for bus journey interpolation (as shown in Eq. (1)). Wrongly
detected arrivals were removed by investigating travel times from
previous station or to next station. The wrongly detected arrivals are
additional arrivals at a certain station. Using them to calculate the
travel times normally result in shorter travel times compared to other
correctly detected arrivals. By detecting outlying travel times, the
wrongly detected train arrivals were removed.

Complete arrival time tables were created for all metro services.
However, this approach provided only the arrival time estimations.
Other missing information on metro services such as departure times at
terminals and train dwelling times were calculated based on the arrival
timetable and the surveyed information. For example, the train de-
parture times at each station were calculated as estimated arrival times
plus surveyed dwelling times. And departure times at terminals were
estimated by deducting the travel times from terminals to the second
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Fig. 1. Example of bus journey trajectories.
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stations along the service routes.

3.4.3. Transfers
The smart card database collects information on passengers'

boarding and alighting from a particular bus line route, as well as en-
tering and leaving the metro stations. No detailed information within
the metro system was collected by the smart card system. Therefore, the
transfers were classified as internal transfers within the metro system
and external transfers.

As introduced previously, a survey was conducted to obtain detailed
information including transfer times within the metro system. Since
there was no change in station infrastructure between 2013 and 2015,
the surveyed transfer times in 2015 were found reliable to represent the
situation in 2013. Additionally, the fare gates were also modelled as
dummy platforms which serve as access point of the metro system so
that the transfers from bus stops to metro stations can be considered as
an external transfer from bus stops to fare gates followed by an internal
transfer from fare gates to platforms.

The external transfer times were calculated based on the collected
smart card database. The smart card database collects information on
individual trips as separate data records. No transfer information was
directly stored in the database. But as introduced previously, identical
journal IDs are shared among different trips within same journeys. By
sorting different trips with the same journey ID by the boarding times,
the chronological order of the trips was clearly obtained. The alighting
stops of a certain trip and the boarding stop of its succeeding trip in-
dicate a transfer between the two stops (transfer stop pair). The time
difference between the corresponding alighting and boarding was also
calculated to estimate the transfer time. Thus, the actual transfer links
between stops could be identified and the corresponding transfer times
were estimated.

It is worth mentioning that the calculated transfer times do not
contain only transfer walking time. According to the definition of
transfer by the smart card system in Singapore, a maximum of 45min of

transfer time is allowed. If the transfer time is longer than 45min, the
next check-in will be regarded as start of a new trip chain. The 45-
minute duration is rather long and many activities such as shopping and
dining could be finished during the period. As a result, the calculated
transfer times could contain such activities. Additionally, if passengers
transfer to buses, the calculated transfer times contain waiting times at
stops as well. But if passengers transfer to metro stations, the boarding
times of the succeeding trip clearly indicate the time when passengers
arrived at the fare gates. Considering the different situation, the cal-
culations of external transfer times were made in different ways.

The check-in times to the metro system indicate the times when
passengers pass the fare gates, no waiting times were included in the
calculated transfer times. The transfer times from buses to metro could
be directly estimated based on the calculated times. Due to the large
amount of available data, many transfer times were retrieved for each
transfer stop pair. As shown in Table 3, the retrieved transfer times vary
substantially and may contain certain errors. An outlier filter was ap-
plied to remove outlying calculated transfer times with both static and
dynamic limits. According to the smart card system, 45min was first
applied as a static upper limit. Another dynamic outlier filter was ap-
plied using the interquartile range method (Tukey, 1977). The inter-
quartile range has dynamic upper and lower limits for the dataset as
shown in Eq. (3).

= + × −

= − × −

L Q Q Q
L Q Q Q

2
2

up

down

3 3 1

1 3 1 (3)

where:
Lup is the upper limit for data filtering;
Ldown is the lower limit for data filtering;
Qi is the ith quartile of the dataset.
Data-falls outside the limits are normally considered outliers and are

filtered. Medians of the filtered datasets were used as representative
transfer walking times (Fig. 3).

Different from the transfers to metro stations, calculated transfer
times to bus stops contain certain portion of waiting times. With no
supporting information on bus operations, the calculated transfer times
could not be used to estimate actual transfer walking times. As a result,
the transfer walking times from metro to buses were replaced by the
calculated ones in the opposite direction (from buses to metro). And the
transfer times between bus stops were calculated as distance measured
by a third-party map divided by the average walking speed of 74m/min
in Singapore (Tanaboriboon et al., 1986).

With all bus and train trajectories replicated and passenger transfer
network created, Singapore's public transport system supply was de-
veloped comprehensively. The operational details including the
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Fig. 2. Check-out passenger volumes.

Table 3
Estimated train arrival timetable.

Train no. Stop 1 Stop 2 Stop 3 Stop 4 Stop 5 Stop 6

Train 1 06:20:06 06:22:45a 06:27:05 06:30:40 06:33:31 06:35:54
Train 2 06:24:08 06:26:47 06:30:51 06:34:29 06:37:38 06:40:07
Train 3 06:28:57 06:31:36 06:35:56 06:39:20a 06:42:34 06:45:04
Train 4 06:37:24 06:39:44 06:43:54 06:47:27 06:50:31a 06:53:13a

Train 5 06:39:08 06:41:47 06:46:28 06:49:54 06:53:05 06:55:25

a Estimated arrival times by interpolation.
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transfers and operational timetables were generated from the collected
smart card database and stored.

3.5. Replication of public transport demand

The conventional public transport models rely on defined zones. A
zone in the network can be a residential block, a business building or a
school. Passengers start their trips from each zone and then finish the
first mile to access the public transport network. After the trips in public
transport systems, passengers finish the last mile to a certain destina-
tion zone. The travel demand OD matrices are created based on the
zones in the network and their characteristics.

With smart card system, no information on first or last mile is col-
lected. But the system provides precise information on passengers
starting stop, ending stop and exact paths in the public transport
system. Stop-to-stop OD matrices were created from the smart card
database.

As mentioned before, the complexity of public transport network
raise challenges in terms of computational power required by the direct
assignment method. The large number of to-be-assigned datasets have
the same issues. As a result, the 41 chosen days were further selected for
direct assignment. Days with the most stable travel patterns were
chosen to represent weekdays in the three-month period. They were
chosen based on the mean error of the passenger travel demand of each
OD pair compared to the average demand of 41 days (Eq. (4)). The
calculated mean errors are divided by the average number of trips of
the 41 days to represent the relative difference between daily travel
demand and the average travel demand (Table 4).

=

∑ −
=Mean Error

OD OD

Nj
i

N

i j i
1

,

(4)

where:
j is the jth day of the selected 41 days;
ODi, j is the passenger travel demand of the ith OD pair in the jth

day;
ODi is the average passenger travel demand of the ith OD pair;
N is the total number of OD pair created from the smart card da-

tabase.
Ten days out of the 41 days (19 to 22 August, 26 to 29 August, 2 to 3

September 2013) with the least mean error were chosen for the direct
assignment. Those days were consecutive ten normal weekdays
(Monday to Thursday) from the second week after a four-day long
holiday (two public holidays and a weekend, from 8 to 11 August
2013). The selected ten days contain totally 59,896,509 data records.

The smart card database collects each trip segment as individual
data records and identifies passenger trip chains with a unique journey
ID. Hence, complete passenger trip chains can be obtained by ordering
the start times of all trips with same journey ID. Additionally, by in-
vestigating the alighting stop and time of a certain trip segment and the
boarding time and stop of its next segment, passenger transfer trips are
also generated.

As shown in Fig. 4, a passenger took bus line 6 in the morning from
stop “Green View Sec Sch” to “Pasir Ris Int”. The bus trip took him/her
6min and 43 s. After alighting, he/she walked for 4min and 4 s to the
metro station and took a train. The later metro trip to “Tanjong Pagar
MRT” station took him/her 32min and 56 s. With all three segments
generated from smart card database, the complete trip chain was in-
corporated into PTV Visum for direct assignment. All trip chains within
the selected 10 days were reconstructed in such way for direct assign-
ment. The 59.9 million trip segments records were combined into 41.9
million passenger trip chains.

Table 5 presents the direct assignment result. 41,598,426 out of
41,934,463 of collected passenger trip chains from the selected 10 days
were successfully assigned. There exist 336,037 trip chains that could
not be assigned. Those trips failed because they are trips made with
irregular or night services. Because the operational replication focuses
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Fig. 3. Retrieved transfer times of one transfer stop pair.

Table 4
Relative difference between daily travel demand and the average travel demand.

Dates Difference [%] Dates Difference [%]

8/22/2013 6.56% 8/12/2013 7.14%
8/27/2013 6.64% 10/9/2013 7.14%
8/28/2013 6.65% 10/29/2013 7.15%
8/20/2013 6.67% 10/24/2013 7.18%
8/19/2013 6.74% 9/24/2013 7.22%
9/3/2013 6.76% 8/15/2013 7.25%
8/26/2013 6.80% 9/25/2013 7.26%
8/29/2013 6.80% 9/26/2013 7.29%
8/21/2013 6.80% 10/17/2013 7.29%
9/2/2013 6.81% 10/21/2013 7.30%
8/14/2013 6.83% 10/30/2013 7.47%
10/2/2013 6.84% 10/23/2013 7.49%
10/8/2013 6.89% 10/28/2013 7.50%
9/30/2013 6.93% 10/16/2013 7.52%
8/13/2013 6.93% 8/5/2013 7.74%
10/7/2013 6.96% 10/31/2013 8.02%
10/10/2013 7.01% 8/1/2013 8.03%
9/4/2013 7.01% 8/6/2013 8.35%
10/1/2013 7.04% 10/14/2013 8.68%
10/22/2013 7.08% 9/5/2013 8.91%
10/3/2013 7.12%
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on normal operation on weekdays, the irregular or night services are
not implemented. So, all trips made with such services were not suc-
cessfully assigned. Therefore, excluding trips made by cash (3%),

mistaken data which could not be corrected (0.3%) and unsuccessfully
assigned trips made with irregular or night services (0.7%), the re-
maining approximately 96% travel demand has been successfully ac-
counted for.

As introduced previously, the public transport supply implemented
in the replication has a certain level of aggregation. To match the ag-
gregated public transport supply and precisely collected passenger trip
chains, a 15-minute tolerant interval was implemented to match pas-
sengers' departure times and public transport's departure times at stops.
This results in certain level of errors (up to 15min) to the direct as-
signment results, compared to actual scenario in terms of temporal
travel demand distribution. But due to the nature of direct assignment,
results are precise in terms of spatial travel demand distribution.

Fig. 4. Passenger trip chain example for direct assignment.

Table 5
Direct assignment result.

Type No. of trips [trips]

Successfully assigned 41,598,426
Unsuccessfully assigned with departure time specified 0
Unsuccessfully assigned with no available services 336,037
Unsuccessfully assigned with required walk links missing 0
Total 41,934,463

Fig. 5. Replicated public transport network in Singapore.
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Fig. 6. Public transport passenger demand over the entire network.

Fig. 7. Hourly passenger distribution in bus network during morning peak hours.
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4. Application of the replication

Compared to the conventional models, the disaggregated replication
with precise assigned passenger trips, contains accurate temporal and
spatial information on both supply and demand sides of the public
transport system. Many operational details, including corridor-specific
demand, bus operation bottlenecks, passenger transfer patterns and
route choice preference could be analysed. These operational details
could directly provide quantitative results to the decision makers to
understand the actual operational situation and improve the service
quality.

As shown in Fig. 5, the operational details including the transfers
and operational timetables were generated from the collected smart
card database and implemented in the replication.

With the direct assignment method, passenger demand over the
selected 10 days were all directly assigned to public transport supply
with exact path information. As shown in Fig. 6, travel demand along
every segment of the public transport network is presented. Due to the
large gap of travel demand between bus and metro system, bus lines
with relatively lower demand are not well visualised. It is still obvious
that the metro system is carrying the majority of trips while buses are
covering the rest of demand in the entire city. As introduced before, the
supply implemented has a certain level of aggregation. Therefore, each
assigned passenger trip has minor offsets in time compared to the

original database.
Furthermore, by filtering the travel demand by time of day, tem-

poral distribution of public transport passenger can be revealed. Fig. 7
illustrates the hourly travel demand on the bus network in Singapore
during the morning peak hours. Compared to conventional approaches
which build models based on conditions during the survey periods, the
disaggregated replication contains trip information with precision of a
few minutes. The demand changing dynamics provides a clear view of
the trend of public transport ridership over the entire system. Highly
demanded road sections during specific times of day can be identified to
support public transport planning and fleet operation.

Additionally, operation details of the system such as transfer pat-
terns could also be retrieved from the replication. As shown in Fig. 8,
the realised transfer network with expected transfer walking time and
transferring passenger volumes on particular links were also obtained
from the direct assignment. In the figure, the numbers in the rectangle
indicate the transferring time and passenger volumes. The red number
indicates the walking time and the yellow number is the transferring
passenger volume. Such information could directly help decision ma-
kers to understand the most in-demand transfer locations and specific
links in order to prioritise improvement in infrastructure for transfer-
ring.

Other than describing the travel demand, characteristics of the
traffic condition could also be identified. As shown in Fig. 1, bus tra-
jectories were generated from the smart card database. Many aspects
were observed from the figure. For example, time and location of the
buses slowing down (with lower slop in the trajectories) as well as
bunching (intersection or converging of trajectories) were identified.
This could help to identify the bus bunching problem (Wang, 2016) as
well as to investigate the general traffic conditions over the network
and reveal the times and locations of traffic congestions.

Moreover, the bus occupancies over the operations could also be
retrieved (Table 6). With known plate numbers from the database and
third-party data resource (sgWiki, 2015), the design capacity of each
bus in Singapore was found. The bus vehicle utilisation can be indicated
by the occupancy of the vehicles or the number of passengers compared

Fig. 8. Passenger demand from 8:00 to 9:00.

Table 6
Bus occupancies along journeys on an example bus line in Singapore.

Stop no. On-board passenger Design capacity Occupancies

1 51 88 57.95%
2 53 88 60.23%
3 53 88 60.23%
4 49 88 55.68%
5 43 88 48.86%
6 41 88 46.59%
7 58 88 65.91%
8 55 88 62.50%
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to its design capacity. On-board passenger numbers were attained by
the calculation of numbers of passengers boarding and alighting at each
stop along the specific bus journeys. The results can benefit the op-
erators and agencies with dynamic occupancy information of each bus
along each section of service routes, so that the route planning and fleet
operation could be optimised accordingly.

Based on the study of bus occupancies, the general utilisation of bus
fleet over the day could also be estimated. Fig. 9 shows an example of
average and maximum occupancies of an example bus line against the
offered capacity over the day. Average and maximum utilisation rates
are also shown. It can be observed that this bus line provides sufficient
supply during morning and evening peak hours. Meanwhile, it also
manages to maintain the utilisation rate of buses within a stable range
during day time. This study helps to identify insufficient or excess
supply of bus lines over the day and leads to a re-organization of bus
fleet for operators.

Many of the above-mentioned outputs from this replication work
have been reported to and implemented by Singapore's public agencies.
For example, the trip chain information is being used for trip planning
and the transfer demand information is used to identify key spots for
infrastructure planning.

Additionally, as introduced, the replication is capable of re-
presenting current situations. But it lacks proper mathematical models
for forecasting future scenarios. However, the direct assignment results
can be further aggregated to compute O-D demand. Thus, with both
demand per OD pair and exact passenger distribution, the replication
could help to calibrate passenger behaviour model (e.g. route choice
models).

Compared with the conventional approaches, the smart card-centric
replication of public transport system has certain advantages and dis-
advantages (Table 7). It requires less survey data, but large amount of
high quality smart card data. The approach does not require passenger
behaviour estimation, but needs very high computational power for
data processing and direct assignment. Lastly, the replication provides a
very high level of actualised operational information of real situations,
but it has no capability of forecasting future scenarios. As a result, the
major application of this approach is to support the decision makers to
fully understand the current situation to improve the service quality.

5. Conclusion and future work

This study successfully replicated the public transport system in
Singapore with data from smart cards. But compared with the con-
ventional approaches, the replication provides several results in terms
of operational details which can be directly used by decision makers to
improve the quality of service. However, the successful replication
highly relies on the quality and quantity of data input. Compared to the
smart card systems worldwide, Singapore's system is advanced with a
high penetration rate and provides precise information on both check-
in and check-out. The comprehensiveness and accuracy of collected
database guaranteed the success of the replication.

The replication contains most of the trips made with public trans-
port during the selected 10 days. Trips made by cash (3%), mistaken
data which could not be corrected (0.3%) and unsuccessfully assigned
trips made with irregular or night services (0.7%) account for a sum of
4% missing trips. As a result, the replication covers approximately 96%
of travel demand on public transport system. There exist certain errors
(up to 15min) in terms of passenger departure times due to the ag-
gregated supply implemented. But it is precise in terms of spatial de-
mand distribution because of the nature of direct assignment.
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Table 7
Comparison of public transport modelling approaches to the replication.

Approach Four-
step
model

Activity-
based
model

Agent-based
model

Smart card data-
centric
replication

Survey requirement Yes Yes Yes Yes, but minor
Data requirement High High High Very High
Computational power

requirement
Low Low High High

Mathematical
method involved

Yes Yes Yes No

Calibration
requirement

Yes Yes Yes No

Result detail level Low Low High, but
estimated

Very high, only
actualised

Capability to
hypothetical
scenarios

Yes Yes Yes No
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Therefore, the details presented by the replication are reliable in terms
of coverage and could be used to represent the entire population's usage
of public transport.

During the replication work, bus journeys were aggregated to re-
duce complexity and the real passenger inter-modal trip chains were
directly assigned to the replicated supply. The resulting replication
contains a certain level of difference compared to the original database.
A fully disaggregated replication could be done if there are fewer
constraints on the computational power.

Many applications can be derived from the replication. For example,
the transfer demand can be used for infrastructural planning, bus oc-
cupancies can be used to optimise fleet operation and planning. There is
still a large scope for future work in this study. Particularly, the current
work focuses on daily commute during weekdays; the analysis can be
further extended to analysis for different types of days (weekdays,
weekends, and public holidays) or different types of passengers (stu-
dents, adults and elder people). Such studies could provide better in-
sights on the public transport system operation.

Due to the nature of replication, the applications are limited to
understanding current scenarios. As introduced previously, another
major future work is to use the aggregated OD demand and the ac-
tualised trip distribution provided by the direct assignment to validate
passenger route choice behaviour. This work could overcome the lim-
itations of this data-centric approach and provide capabilities for
forecasting future scenarios and conducting attitudinal or prospective
analyses.
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