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Abstract—High-speed corner detection is an essential step in 

many real-time computer vision applications, e.g. object 
recognition, motion analysis and stereo matching. Hardware 
implementation of corner detection algorithms such as the Harris 
corner detector (HCD) has become a viable solution for meeting 
real-time requirements of the applications. A major challenge lies 
in the design of power, energy and area efficient architectures that 
can be deployed in tightly constrained embedded systems while 
still meeting real-time requirements. In this paper, we proposed a 
bit-width optimization strategy for designing hardware-efficient 
HCD that exploits the thresholding step in the algorithm to 
determine interest points from the corner responses. The proposed 
strategy relies on the threshold as a guide to truncate the bit-
widths of the operators at various stages of the HCD pipeline with 
only marginal loss of accuracy. Synthesis results based on 65-nm 
CMOS technology show that the proposed strategy leads to power-
delay reduction of 35.2%, and area reduction of 35.4% over the 
baseline implementation. In addition, through careful retiming, 
the proposed implementation achieves over 2.2 times increase in 
maximum frequency while achieving an area reduction of 35.1% 
and power-delay reduction of 35.7% over the baseline 
implementation. Finally, we performed repeatability tests to show 
that the optimized HCD architecture achieves comparable 
accuracy with the baseline implementation (average decrease of 
repeatability is less than 0.6%). 
 

Index Terms—Corner detection, hardware acceleration, VLSI, 
embedded vision 

I. INTRODUCTION 

EAL-time computer vision algorithms are extensively used 
in a wide range of applications such as vision-based 

navigation for image-guided medical interventions [1], 
navigation of unmanned vehicles [2] and robots [3], video 
encoding on unmanned aerial vehicles [4], video tracking [5] 
and visual SLAM [6]. A fundamental step in these applications 
is the detection of corners which represent identifiable anchor 
points in the image. Corners are used for visual odometry, 
stereo matching, optical flow computation, object tracking and 
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as robust image representation when combined with feature 
descriptors for object recognition. Hence, it is important to have 
efficient implementation of the corner detection operations for 
deployment in embedded systems which have stringent 
performance, power, and resource constraints. 

Several corner detectors have been proposed in the literature 
[7][8] and comparative evaluations have shown that the Harris 
corner detector (HCD) [9] achieves some of the best results 
[8][10]. The HCD is also the most widely used feature detection 
algorithm due to its robustness in detecting corners in noisy 
images [11]. However, the computationally intensive 
operations in the algorithm incurs a performance bottleneck and 
significant power consumption on general purpose 
microprocessors [11]. This is aggravated by fact that corner 
detectors contribute to a large portion of the overall runtime in 
many computer vision processes. For example, corner detectors 
are used for computing the ORB feature descriptor in visual 
SLAM [12]. The runtime of ORB computation contributes to 
over a third of the real-time tracking process. The work in [13] 
reported that the Harris algorithm contributes to over 36% of 
the execution time for stereo correspondence. 

There are some recent attempts to reduce the computational 
complexity of corner detection algorithms such that they can be 
realized on embedded processors [14]-[16]. These techniques 
typically rely on pruning the search space for corners using 
simple approximations before applying a more complex corner 
measure step to evaluate the candidate set. While it has been 
shown that the method proposed in [14] achieves substantial 
speedup over the conventional algorithms, they are still unable 
to meet the power, performance, and area requirements of real-
time embedded vision applications when realized on software-
based platforms. 

Motivated by the need to meet real-time requirements, 
hardware implementations of corner detection algorithms have 
been proposed [17]-[20]. These techniques often exploit the 
inherent parallelism in the corner detectors and find a 
reasonable trade-off between the number of line buffers and the 
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computational resources to manage the resource utilization 
while ensuring high throughput and acceptable result quality. 
However, there has been little effort undertaken to investigate 
data-path optimizations for achieving power-delay-area gains. 
Reducing power and energy consumption is particularly 
important given the increasing use of complex computer vision 
applications on battery-operated embedded devices [21]-[23].  

Our study reveals that the complexity of the operators in the 
HCD data-path increases notably from one pipeline stage to the 
next due to bit-width aggregation. The HCD algorithm 
computes the corner response for every pixel in the image, and 
the pixel position is considered a corner if the corresponding 
corner response exceeds a given threshold. The bit-width of the 
Harris corner response is about 6 times larger than the input 
pixel bit-width. We propose a novel bit-width optimization 
strategy for hardware-efficient HCD implementation based on 
the intuition that the errors arising from bit-width truncation 
that are lesser than the threshold, will not result in loss of 
accuracy. As such, the threshold can be used to determine the 
bit-width truncation at various stages in order to achieve power-
delay-area gains while guaranteeing the robustness of the 
implementation. Synthesis results based on 65-nm CMOS 
technology show that the proposed strategy can lead to 
significant power-delay-area gain over the baseline algorithm 
without bit-width truncation. To the best of our knowledge, the 
proposed strategy is the first to exploit the threshold value for 
reliably optimizing the bit-width in hardware realizations of 
computer vision algorithms.  

The throughput of the HCD architecture can be further 
increased through pipelining. However, classical retiming 
methods that rely on discrete timing models of the operators do 
not lead to efficient pipelining. The proposed bit-width 
optimization strategy facilitates bit-level estimation of the 
propagation delays across different paths of the HCD 
architecture for accurate estimates of the critical path. This 
provides a means for applying pipelining at finer granularity to 
the HCD architecture, which leads to significant improvement 
in the throughput and power-delay efficiency. While we only 
focused on HCD in this paper, the proposed strategies can be 
applied to a wide range of computer vision algorithms (e.g. 
edge detection and object detection) that employs thresholding 
to obtain results. 

The rest of the paper is organized as follows. Section II 
discusses previous work on hardware implementation of the 
HCD algorithm and existing techniques on bit-width 
optimization. Section III provides a brief overview of the HCD 
algorithm and the baseline hardware implementation. Section 
IV describes the proposed bit-width optimization strategy and 
the optimized hardware implementation of HCD. We also show 
that the performance of the optimized HCD implementation can 
be further improved through seamless pipelining using the 
connected timing model. In Section V, we evaluate the accuracy 
of the proposed hardware implementations using repeatability 
tests and provide the synthesis results to demonstrate the power-
delay-area gains of the proposed strategy. We conclude the 
paper in Section VI. 

II. RELATED WORK 

In this section, we discuss existing work on hardware 
implementations of HCD and previously reported bit-width 
optimization strategies. At the end of this section, we list the 
main contributions of this paper. 

A. Harris Corner Detector Architectures 

Hardware implementations of HCD have been proposed on 
ASIC [24], FPGA [20][25][26], cell processor [27], and SIMD 
architecture [28]. The HCD algorithm computes an auto-
correlation matrix for each pixel using the first-order 
derivatives of the intensity values and this matrix represents the 
degree of intensity variations in different directions around the 
corresponding pixel. A complex corner measure computation is 
then performed for every pixel in the image. This step is highly 
compute-intensive, and becomes a bottleneck for real-time 
vision tasks. In [29], a modified number representation for the 
corner response is used in custom instructions on the NIOS II 
processor. In [30], a hardware implementation that performs 
HCD on a rank transform image instead of the original image is 
presented. 

In [17], a frame buffer based approach is described in which 
every individual step of the HCD algorithm is sequentially 
carried out over the full image frame. This requires storing 
intermediate data of the entire frame. Multiple image regions 
can be processed separately in parallel which would allow very 
high operating frequency at the cost of large memory 
requirements. In [11][18]-[20], row buffer based hardware 
implementation of the HCD is employed, in which image is 
locally processed. A small scanning window is utilized to 
determine whether the center image pixel is a corner or not. This 
approach requires only a few row buffers. Since all the 
sequential steps of HCD algorithm are performed locally rather 
than over the complete image, the intermediate data can be 
stored in local registers which results in low storage 
requirements but at the cost of increase in latency. In [19], a 
visual pipeline architecture is proposed based on row buffers 
which is a combination of parallel and pipelined architecture to 
achieve a higher speed. Power, speed and area trade-offs have 
been previously explored for the row buffer approach by 
varying the scanning window size and number of row buffers. 
The work in [18] compared the resource utilization and speed 
of two architectures with varying scanning window size and 
different row buffer configurations.   

Since many computer vision applications employing corner 
detectors run on tightly constrained embedded systems e.g. 
mobile robots, mobile devices, UAVs, etc., there is a need to 
investigate design techniques that not only leads to real-time 
computation but also results in low power and energy efficient 
solutions. However, existing hardware implementations of 
corner detectors often only investigate area-delay trade-offs 
between the number of row buffers and computational 
resources, while neglecting data-path optimizations that can 
potentially lead to low power or energy efficient realizations. 
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Fig. 1: Baseline HCD architecture with conservative bit-widths (each square box represents a register). 
 

B. Bit-width Optimization 

Bit-width optimization is an effective approach for reducing 
the hardware complexity by streamlining the data-paths using 
custom bit-width operators [31]-[35]. This can lead to large 
savings in area resources and power consumption. The 
challenge is to identify suitable bit-widths for each operator 
such that the overall implementation can still produce results 
with acceptable quality. The work in [11] truncates the Harris 
measure to 8 bits for more efficient hardware implementation, 
but did not provide any theoretical or analytical justification for 
the choice of bit-width truncation. An extra Gaussian filtering 
is incorporated between the Harris corner response computation 
and non-maximal suppression to reduce the resulting error due 
to saturation, which incur additional hardware resources. This 
work did not evaluate the impact of their bit-width truncation 
on the accuracy of the output. Most of the existing methods for 
determining optimal operator bit-widths of a given algorithm 
rely on methods that are based on interval arithmetic [36][37] 
and affine arithmetic [38]-[40]. Interval arithmetic assumes all 
values of arguments vary independently leading to drastic 
overestimation of the range. Affine arithmetic based methods 
overcome the limitations of interval arithmetic by providing 
tighter bounds on the range. The work in [40], which employs 
affine arithmetic, first calculates the ranges of all the 
intermediate signals (after each arithmetic operation) and 
output signals based on the range of input signals. This 
information is then used for determining the optimal bit-widths 
at every stage in the pipeline. Such an approach thus requires 
computations that are proportional to the number of arithmetic 
operations and any changes in the range of inputs requires entire 
re-computation. Exploring bit-width optimizations for varying 
ranges of the inputs (due to bit-width truncations) to meet the 
desired accuracy can therefore be a laborious process. In 
addition, non-affine invariant arithmetic operations like 
multiplication and division in which the resulting output is not 
in affine form, is approximated to an affine form. This can result 
in estimation error during bit-width truncation. In addition, this 
error can be propagated through the pipeline stages and 
eventually result in high inaccuracy at the output.    

Our approach for finding optimal bit-width overcomes the 
shortcomings of interval arithmetic and affine arithmetic by 
providing an accurate estimation of truncation errors without 
relying on approximation. In addition, our approach requires 
only a one-time computation for deriving error equations that 
help determine the optimal bit-width to meet a desired 
accuracy. As such, the proposed method avoids the laborious 
effort required by affine arithmetic for determining the bit-
width truncations of different input ranges. To the best of our 
knowledge, this work is the first to exploit the thresholding step 
found in many computer vision algorithms to optimize the 
operator bit-widths. Since the thresholding step effectively 
filters results that do not meet the given threshold, we can use 
the threshold value to guide bit-width truncation without 
incurring unacceptable loss of accuracy. 

C. Main Contributions  

The main contributions of this work are summarized as 
follow: 
 To the best of our knowledge, this is the first work to 

demonstrate the power-delay-area advantages of bit-width 
optimization in corner detector architectures.  

 We propose a novel threshold-guided bit-width 
optimization strategy for the HCD that enables effective 
accuracy and hardware-efficiency trade-offs. Based on the 
given threshold, the proposed strategy first rapidly 
identifies an initial bit-width optimized solution for the 
HCD pipeline that does not lead to accuracy loss. The 
initial solution is then further refined to obtain a final 
truncated bit-width solution that incurs marginal accuracy 
loss, while achieving large power-delay-area gains. It is 
worth mentioning that the proposed strategy can be easily 
adapted to other computer vision algorithms that employ 
thresholding (e.g. edge detection and object detection). 

 We conducted detailed estimation of propagation delay at 
the critical path of the proposed HCD and performed 
efficient pipelining to further reduce the critical path delay 
and improve the throughput rate. 

 Repeatability tests are undertaken to demonstrate that the 
optimized HCD architecture produces results with high 
accuracy. 
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III. BASELINE ARCHITECTURE FOR HCD 

The HCD algorithm performs corner detection based on a 
local auto-correlation function that is approximated by matrix 
M within a small window W of each pixel ሺݔ,  ሻ as shown inݕ
Eq. (1). ܫ௫	and ܫ௬ are the horizontal and vertical gradients, and 
 ሻ is the Gaussian weight function. The two eigenvalues ofݔሺݓ
M, i.e. λ1 and λ2, indicate the intensity change in the window W 
centered on ሺݔ, ,ݔሺ	,ሻ. Specificallyݕ  ሻ is a corner if both theݕ
eigenvalues are large.  

 

ܯ ൌ ቈ
∑ ௫ܫሻݔሺݓ

ଶ
௪ ∑ ௬௪ܫ௫ܫሻݔሺݓ

∑ ௬௪ܫ௫ܫሻݔሺݓ ∑ ௬ܫሻݔሺݓ
ଶ

௪
 ൌ ቂܽ			ܾ

ܾ			ܿ
ቃ  (1) 

 
To avoid explicit computations of the eigenvalues, the HCD 

combines the eigenvalues into a single corner measure R as 
shown in Eq. (2), where k is an empirical constant and is usually 
set between 0.04 and 0.06. A threshold T is applied on the 
corner response to discard the obvious non-corners. The pixels 
with the highest corner response are then selected as corners 
after applying non-maximal suppression. 

 
ܴ ൌ ଵߣ ∙ ଶߣ െ ݇ ∙ ሺߣଵ   ଶሻଶߣ

							ൌ detሺܯሻ െ ݇ ∙  ሻܯଶሺ݁ܿܽݎݐ
																				ൌ ሺܽܿ െ ܾଶሻ െ ݇ ∙ ሺܽ  ܿሻଶ   (2) 

 
Fig. 1 shows the baseline HCD architecture. We assume a 

single input pixel of n-bit (in our implementation n = 8 for 
grayscale image) arrives at each clock cycle. Five row buffers 
as shown in Fig. 2 are concatenated in the form of FIFO delay 
buffers to cache the incoming pixels. The size of each row 
buffer is equivalent to the horizontal resolution of the image, 
and hence each row buffer effectively delays the input by one 
row. The pixels at the tail end of each row buffer are shifted into 
the pipeline stages.  

 
 
Fig. 2: Row buffers to cache incoming pixels. 
 

The HCD architecture consists of the following five pipeline 
stages: 
 Gradient Computation: The first pipeline stage computes 

the horizontal and vertical gradients ܫ௫ and ܫ௬ of the 
incoming pixels from the row buffers. The gradient 
computation is performed on a 5x3 neighborhood of pixels. 
This allows for simultaneous computations of three sets of 
 ௬ values (corresponding to the pixels in the middleܫ ௫ andܫ
column registers) at every clock cycle. In Fig. 1, the top 
block of the gradient computation stage computes the ܫ௫ 
gradients whereas the bottom block computes the ܫ௬ 
gradients. Note that the first column registers in the top and 

bottom blocks (highlighted in pink) are common and 
hence, the ܫ௬ computation block only requires 6 registers.  

 Product of Gradients: The second pipeline stage computes 
the product of gradients to generate ܫ௫

ଶ, ܫ௬
ଶ and ܫ௫ܫ௬. The 

multiplication operations for computing ܫ௫ܫ௬ can be 
reduced to less complex squaring, subtraction and 1-bit 
shift operations by utilizing the results of ܫ௫

ଶ and ܫ௬
ଶ as 

shown in Eq. (3). Three sets of  ܫ௫
ଶ, ܫ௬

ଶ and ܫ௫ܫ௬ values are 
generated in each clock cycle in this pipeline stage. 

௬ܫ௫ܫ ൌ
ሺூೣାூሻమିூೣ

మିூ
మ

ଶ
   (3) 

 
 Gaussian Smoothing: Gaussian smoothing is applied to the 

product of gradients in this stage to produce a, b and c as 
shown in Eq. (1). This is achieved by caching the product 
of gradients using three sets of 3x3 registers and applying 
the Gaussian weight function	ݓሺݔሻ to compute a, b and c 
in parallel, where ݓሺݔሻ ൌ 0.0625 ∙
ሾሺ1	2	1ሻሺ2	4	2ሻሺ1	2	1ሻሿ். 

 Corner measure: The fourth pipeline stage computes the 
Harris corner measure R as shown in Eq. (2). Similar to the 
implementation in [17], we have approximated the value of 
k to be 0.0625 (1/16) so that constant shift operation can be 
used in place of a multiplier. 

 Non-Maximal Suppression: In the final pipeline stage, the 
corner response R is first compared with a threshold T. If 
the corner measure is less than T, R is set to 0 (this avoids 
unnecessarily storing negative corner responses which are 
non-corners), otherwise the original value of R is retained. 
The corner responses are then cached using three row 
buffers as the non-maximal suppression (NMS) operation 
requires a 3x3 pixel region whereas only a single output is 
produced at the Corner Response stage. The NMS 
operation determines whether the center pixel of the 3x3 
region is a corner or not by comparing its corner response 
to the corner responses of its 8 adjacent pixels. Fig. 3 shows 
the architecture of the NMS pipeline stage. 

 
Fig. 3: Thresholding and non-maximal suppression. 

IV. PROPOSED IMPLEMENTATION 

It can be observed from the baseline HCD architecture in Fig. 
1 that generally the operator bit-widths increase notably from 
one pipeline stage to the next due to the multiplication and 
addition operations. Specifically, multiplication leads to 
doubling of the operand bit-widths while addition results in an 
additional bit. For example, using the conservative bit-width 
assignment, if the bit-width of the pixel n = 8 (for gray scale 
images), the Harris corner measure R would be 45 bits wide. 
This is about six times the size of the input pixels.  
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TABLE 2: ERROR PROPAGATION EQUATIONS AT EACH PIPELINE STAGE DUE TOM-BIT TRUNCATION AT THE GRADIENT 

COMPUTATION STAGE 
Pipeline Stage Error Propagation Equations 

Gradient Computation 
௫ܫ∆ ൌ 2 െ 1 
௬ܫ∆ ൌ 2 െ 1 

Product of Gradients 

௫ܫ∆
ଶ ൌ 2 ∙ |௫ܫ| ∙ ሺ∆ܫ௫ሻ 

௬ܫ∆
ଶ ൌ 2 ∙ หܫ௬ห ∙ ሺ∆ܫ௬ሻ 

௬ܫ௫ܫ∆ ൌ ට൫ܫ௬ ∙ ௫൯ܫ∆
ଶ
 ൫ܫ௫ ∙ ௬൯ܫ∆

ଶ
 

Gaussian Smoothing 
∆ܽ ൎ ௫ܫ∆

ଶ 
∆ܾ ൎ  ௬ܫ௫ܫ∆
∆ܿ ൎ ௬ܫ∆

ଶ 

Corner Response 

∆ܴ ൌ ඥሺ∆ܴଵሻଶ  ሺ∆ܴଶሻଶ  ሺ∆ܴଷሻଶ 

	 ∆ܴଵ ൌ ඥሺܿ ∙ ∆ܽሻଶ  ሺܽ ∙ ∆ܿሻଶ 
						∆ܴଶ ൌ 2 ∙ |ܾ| ∙ ∆ܾ 

	 ∆ܴଷ ൌ ሺܽ  ܿሻ ∙ ሺ
ඥሺ∆ܽሻଶ  ሺ∆ܿሻଶ

8
ሻ 

  

The significant bit-width increase implies that the 
complexity of the operators in the data-path increases notably 
from one pipeline stage to the next. Bit-width optimization can 
lead to significant reduction in computational resources, power 
reduction and increase in maximum operating frequency. The 
challenge lies in determining suitable bit-width truncation that 
will not compromise on the quality of results. However, none 
of the previously reported hardware implementation of corner 
detectors has addressed this challenge. In this section, we 
present a novel approach to determine the optimal bit width of 
the HCD based on the accuracy requirement, which is governed 
by the threshold value used in the thresholding step of the 
algorithm. 

A. Threshold-Guided Bit-width Truncation 

As discussed in the previous section, the Harris corner 
measure R for every pixel in the image will be compared with a 
threshold T in the final pipeline stage. This thresholding step is 
used to determine if the pixel is a candidate corner, i.e. pixels 
with R > T are candidate corners, whereas pixels that do not 
meet the thresholding criteria are ‘filtered’ by setting their 
corner response R to 0. The threshold T used in HCD is typically 
a very large positive value (e.g. in the order of 1011). Since the 
algorithm is concerned with large R values that exceed the 
threshold, the least significant bits (LSBs) of R and T can be 
removed if they do not affect a change in the thresholding 
decision. Specifically, if the maximum error in R (∆ܴ), that is 
incurred by truncating the bit-width does not exceed the 
threshold T (see Eq. (4)), then there will be no accuracy loss. 
We define	∆ܴ as the output error and the inequality in Eq. (4) 
as the maximum output error tolerance for HCD. 

max	ሺ∆ܴሻ ൏ ܶ  (4) 
 
Since bit-widths of the operators increase in a systematic 

fashion at every step of the algorithm, rather than truncating the 
LSBs of just the Harris corner measure, a more effective 
approach is to perform bit-width truncation of all the operators 
in the earlier pipeline stages while ensuring that the error 
propagation to R still satisfy Eq. (4). This can be achieved by 

first formulating	∆ܴ as a function of m, which is the number of 
bits that is truncated at output of the first pipeline stage (i.e. 
Gradient Computation). Based on this formulation, we can then 
determine maximum number of m bits to be truncated at the first 
pipeline stage which will influence the bit-width truncation at 
the subsequent stages up to R, such that Eq. (4) is satisfied. As 
the error produced at the output of each pipeline stage is 
propagated from the error at the inputs and the error due to bit-
width truncation of the operators, we need to derive the error 
propagation equations of each pipeline stage in order to 
determine ∆ܴ, the resultant error in Harris measure.    

 
TABLE 1: ERROR ANALYSIS OF COMMON OPERATIONS 
Equation Error 

ܣ ൌ ܺ  ܻ െ ܣ∆ ܼ ൌ ඥሺ∆ܺሻଶ  ሺ∆ܻሻଶ  ሺ∆ܼሻଶ 

ܣ ൌ
ܺ. ܻ
ܼ

 
ܣ∆
|ܣ|

ൌ ඨ൬
∆ܺ
ܺ
൰
ଶ

 ൬
∆ܻ
ܻ
൰
ଶ

 ൬
∆ܼ
ܼ
൰
ଶ

 

ܣ ൌ ܿ. ܣ∆ ܺ ൌ |ܿ|. ∆ܺ 

ܣ ൌ ܺ 
ܣ∆
|ܣ|

ൌ |݊|.
∆ܺ
|ܺ|

 

	ܣ ൌ ݂ሺܺ, ܻ,… ሻ 

ܣ∆

ൌ ඨ൬
ܣ∆
∆ܺ

. ∆ܺ൰
ଶ

 ൬
ܣ∆
∆ܻ

. ∆ܻ൰
ଶ

⋯ 

 
We use the error equations in Table 1 to derive the error 

propagation between the pipeline stages of the HCD 
architecture. Using basic differential calculus [41], one can 
derive equations for error in output due to error or uncertainty 
in the inputs of any function.  Table 1 provides the error analysis 
for common arithmetic operations, which shows the error in 
output A due to uncertainty or error in the inputs for arithmetic 
operations on operands X, Y, Z, n, and constant c. The last 
equation of Table 1 shows the general equation based on 
differential calculus for finding error of an arbitrary function. 
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The error propagation equations at each pipeline stage that 
precede R are shown in Table 2. It can be observed that the error 
originating from the truncation of m bits in the first pipeline 
stage (Gradient Computation) propagates through all the 
intermediate stages to output R of the Corner Response stage to 
produce ∆ܴ. For the case of Gaussian smoothing, the equations 
shown are approximated (actual equations are used in our 
experiments). The actual equations are complex as they depend 
on errors and values of variables of neighboring pixels. Based 
on these error propagation equations, we can determine the 
largest value of m such that Eq. (4) is satisfied. Next, we will 
describe our methodology for identifying suitable bit-width 
truncations at the various pipeline stages based on the principles 
discussed in this subsection. 

B. Methodology  

Fig. 4 illustrates the proposed methodology for bit-width 
optimization. Given an algorithm, the first step of the 
methodology derives the error propagation equations to the 
input of the thresholding process (e.g. Table 2) using the error 
analysis in Table 1. Next, the maximum output error tolerance 
(e.g. Eq. (4)) is defined based on the given threshold value. 
Based on this, the maximum number of bits (i.e. m) that can be 
truncated at the first stage of the algorithm (e.g. the first pipeline 
stage of the HCD implementation) is determined. This can be 
achieved in an iterative manner by evaluating incremental 
values of m starting from 1 on sample images until the 
maximum output error tolerance is violated. It is worth 
mentioning that this analysis does not have to be repeated in 
subsequent stages of the pipeline to determine the number of 
bits to be truncated. At the end of third step, the optimal bit-
width truncation at the various stages of the algorithm can be 
determined while ensuring no accuracy loss. The fourth step of 
the methodology (dotted box in Fig. 4) is an optional step to 
further increase the value of m for further bit-width truncation 
and analyze the resulting error through empirical evaluations 
using sample images to perform trade-offs between the 
accuracy and bit-width optimization. 

 

 
 

Fig. 4: Proposed methodology for bit-width optimization 
 
The proposed methodology in Fig. 4 is applied to the HCD 

implementation, and the optimal value of m is found to be 3 
(determined from Step 3 of Fig. 4). This means that if we 
truncate 3 bits at the first pipeline stage in Fig. 1 (Gradient 
Computation), and based on this truncate the bits proportionally 
in the subsequent pipeline stages leading to R, we will achieve 
a streamlined data-path that will not introduce accuracy loss. 
Note that Step 3 of the methodology can be performed rapidly 
without the need for comprehensive error analysis. The fourth 
step of the methodology is undertaken for evaluating the 

accuracy trade-offs when m is increased beyond 3. For the HCD 
implementation, we use the repeatability criteria [8] (discussed 
in the next section) to evaluate the accuracy trade-offs. We 
empirically found that if an additional 2 bits is truncated from 
the image gradients (i.e. m = 3 + 2 = 5), the average accuracy 
degrades by only 0.57%. This effectively truncates 20 LSBs of 
R, which is equivalent to removing 45% of bits in the original 
corner measure. Fig. 5 compares the number of bits in the 
baseline implementation and the proposed implementation 
(after bit-width optimization with m = 5) at the output of the 
HCD pipeline stages. As shown in Table 3 for n = 8, an average 
of 45% bit-width reduction is achieved at each pipeline stage. 
 

 
 
Fig. 5: Bit-width truncation at each pipeline stage (dotted lines show 
optimized bit-width).  
 

Fig. 6 shows the number of bits m that can be truncated from 
the gradient computation block as a function of the threshold T. 
While the plot in Fig. 6 is obtained based on the “graf” image 
set in [42], it shows a general relationship between m and T. As 
T increases, the number of bits that can be truncated without 
affecting accuracy also increases. This confirms our hypotheses 
that a higher threshold T enables more bits to be truncated 
without compromising on accuracy. Fig. 6 also shows a step 
like behavior. This implies that there is a range of threshold T 
with a fixed value of m, i.e. bits that can be truncated without 
sacrificing accuracy. Such analysis enables us to determine a 
suitable threshold T to use (which impacts the number of 
corners generated) for a given set of images, that can provide 
the desired power-delay-area trade-offs. 
 

TABLE 3: BIT-WIDTH COMPARISON BETWEEN BASELINE AND 

PROPOSED IMPLEMENTATION FOR N = 8 
Pipeline Stage Baseline Proposed 

Gradient 
Computation 

11 6 

Product of 
Gradients 

22 12 

Gaussian 
Smoothing 

22 12 

Corner Response 45 25 
 

 
Fig. 6: Number of bits m that can be truncated in the first pipeline stage 
as a function of threshold T. 
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Fig. 8: Two-stage pipelining of Corner Response 

 

C. Seamless pipelining 

The bit-width optimization strategy discussed in the earlier 
sub-sections has led to significant reduction in the area and 
power consumption. In order to further increase the throughput 
of the architecture, we perform bit-level estimation of the 
propagation delays across different paths for accurate estimate 
of the critical path. Besides, we identify efficient feed-forward 
cut-sets to reduce the critical path to a minimum [43]. 

As shown in dotted red line in Fig. 7, the critical path of the 
baseline architecture is ܶ  ெ்ܶ  ܶ where ܶ is the 
delay of a 10-bit adder, ெ்ܶ is the delay of a 11-bit multiplier 
and ܶ is the delay of a 3-input 24-bit subtractor. ܶ can be 
approximated to be 9 ∙ ிܶ  ிܶ, where ிܶ is the delay of a 
full adder and ிܶ is the delay required by a full adder to 
generate the output carry. ܶ can be approximated to be 23 ∙
ிܶ  2 ∙ ிܶ based on the connected timing model discussed 

in [43]. As such, we need to perform pipelining within the 11-
bit multiplier in order to achieve effective register balancing. 
As explained in [44], it is not possible to achieve effective 
pipelining using array multipliers based on carry propagate 
adders. Hence, we have utilized the Wallace tree multiplier in 
our design. 

 

 
 

Fig 7: Critical path of HCD architecture (after bit-width optimization) 

 
The proposed two-stage pipelining on the Wallace multiplier 

is shown in Fig. 8. It can be observed that pipeline registers are 
inserted along the line L1→L2→L3→L4 to partition the 
critical path of the Corner Response stage into two pipeline 
stages such that the critical path delay is divided into almost two 
equal halves. The first pipeline stage consists of the 10-bit adder 

followed by a carry save reduction of the Wallace multiplier 
and addition of 5 lower carry and sum bits. The critical path of 
the first pipeline stage is ሺ9 ∙ ிܶ  ிܶሻ  ሺ4 ∙ ிܶ  ுܶሻ 
ሺ ுܶ  5 ∙ ிܶሻ, where ுܶ is the delay of a half adder. The 
second pipeline stage consists of addition of 10 upper carry and 
sum bits and the 3-input 24-bit subtractor. The critical path 
delay of the second pipeline stage is ሺ9 ∙ ிܶ  ிܶሻ  ሺ23 ∙
ிܶ  2 ∙ ிܶሻ. The other multipliers along the non-critical 

paths of the Corner Response stage have also been pipelined in 
a similar manner. 

V. EXPERIMENTAL RESULTS 

In this section, we will provide experimental results for the 
proposed implementation in terms of accuracy and hardware 
synthesis results.  

A. Accuracy Evaluation 

It is paramount to perform accuracy evaluation of the 
proposed architecture as bit-width optimization may affect the 
accuracy of corner detection. This may render the algorithm 
unsuitable for certain applications e.g. simultaneous 
localization and mapping for autonomous vehicles which 
involve tracking of features over consecutive frames. It is 
noteworthy that most of the previous works on hardware 
implementation of corner detectors do not provide quantitative 
accuracy evaluation of their implementations. In this paper, we 
have adopted the repeatability criteria [8] to compare the 
accuracy of the baseline and proposed implementations. The 
repeatability criterion is based on the notion that detection of 
corners should be invariant to imaging conditions e.g. blurring, 
zooming, and rotation of the scene. An accurate feature detector 
should be robust to the changes in imaging conditions and 
hence, should be able to detect features at close proximity 
between images with changes in viewpoint. The repeatability 
rate is defined as the ratio of the number of repeated features 
between two images within certain pixel allowance, to the 
minimum number of features that are in common region of the 
two images of the same scene but with changes in imaging 
condition(s). 

We have used the image dataset from [42] for the accuracy 
evaluation. These challenging datasets contains three sequences 
(Boat, Graf and UBC) of images with various image 
transformations such as changes in viewpoint, zoom, rotation 
and illumination. Each set contains a base image and 5 images, 
where image transformation are progressively applied. Some 
samples of the images are shown in Fig. 9. The repeatability 
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criteria measure how well the detector match corresponding 
corners between the base image and images with 
transformations. It is expected that the repeatability 
progressively decreases with higher degree of image 
transformations.  

 

 
Fig 9: Image set “Graf”; the top left image is the original and subsequent images 
have increasing viewpoint changes. 

 
The results of the repeatability evaluation for the three image 

sets are shown in Fig. 10 (a pixel allowance of 1.5 pixels is used 
in the evaluations). The threshold T used for all the images 
considered is in the order of 1011. Note that the values in the y-
axis denote the percentage repeatability difference between the 
proposed architecture and that of the original software 
implementation of HCD. The negative difference in Fig. 10 
means that the proposed architecture has accuracy degradation. 
For most images considered, the proposed architecture resulted 
in slightly better repeatability rate i.e. an increase in accuracy 
compared to the original HCD algorithm (as indicated by a 
positive value of the difference in repeatability) whereas for 
others there is a slight decrease in the repeatability rate. It is 
evident that the overall difference in repeatability is marginal 
for the image set considered, i.e. only 0.57% average reduction 
in repeatability. Hence, the proposed architecture has a high 
degree of robustness. It is noteworthy that although there’s 
about 10% decrease in repeatability between proposed and 
original implementation for image 5 of Boat, there is still a high 
degree of matched pixels in the original and proposed 
implementation. In particular, only 4 out of 69 corners fail to 
match between the proposed and original implementation for 
this image.  

 

 
Fig 10: Difference in repeatability rate between proposed implementation and 
original HCD implementation. 

 

We also observed that images with highly uniform texture 
lead to largest accuracy degradation for the proposed 
implementation since bit-width truncation removes the least 
significant bits of Harris measure, while only the least 
significant bits of the corner measure differ in uniform image 
textures. Since corner detectors are typically employed in non-
uniform textured images where corners can be easily 
determined, this does not pose as a limitation to the proposed 
architecture. In the following sub-section, we discuss the 
power-delay-area gains of the proposed architecture. 

B. ASIC Synthesis Results 

The baseline architecture (Baseline), proposed architecture 
with bit-width optimization (Proposed A), and proposed 
architecture with bit-width optimization and seamless 
pipelining (Proposed B) were implemented using Verilog and 
synthesized with Synopsys DC using the TSMC 65-nm CMOS 
technology library.  

Fig. 11 shows the percentage area, delay and power reduction 
of Proposed A over the Baseline when m, the number of bits 
truncated at the first stage of the algorithm, is varied from 1 to 
5. The power is measured based on the maximum achievable 
frequency of each design. It can be observed that the percentage 
area, delay and power reduction increases monotonically with 
m. The percentage reduction in area and delay is expected since 
the bit-width truncation will lead to lesser computational 
resources and lower critical path delay. Even though Proposed 
A has higher operating frequency, it can still achieve lower 
power than Baseline.  

 

 
Fig 11: Percentage area, delay and power reduction of Proposed A compared 
with Baseline with varying m. 

 

 
Fig 12: Percentage area-delay product and power-delay product reduction of 
Proposed A compared with Baseline with varying m. 
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TABLE 3: SYNTHESIS RESULTS FROM SYNOPSIS DESIGN COMPILER USING TSMC 65-NM LIBRARY  

Design Area (Sq um) 
Maximum 
Frequency 

(MHz) 

Power 
(mW) 

Area-Delay 
Product 

Power-
Delay 

Product 

Frames per 
second for 
640 x 480 

images 

Frames per 
second for HD 

images  
(1280 x 720) 

Baseline 1101088.40 224 174 4899843.38 773.23 731 243 
Proposed A 710953.53 327 164 2168408.27 500.87 1067 355 
Proposed B 714146.01 500 249 1428292.02 497.12 1627 542 

        

TABLE 4: FPGA RESULTS  

Design Platform Resolution 

Resource Utilization 
Maximum 
Frequency 

(MHz) 

Performance 
(FPS) LUT-FF/Logic 

Elements 
Memory 
Blocks 

DSP Blocks/ 
Embedded 
Multipliers 

[19]  Altera Cyclone II 640x480 8050 360 29 - 50 
[11] Altera Aria V 1024x1024 8624 43 76 232 219 

Baseline Altera Cyclone IV 1024x1024 1990 20 33 115 109 
Proposed A Altera Cyclone IV 1024x1024 1191 14 15 176 167 
Proposed B Altera Cyclone IV 1024x1024 1964 13 9 211 201 

        

 

Fig. 12 extends the analysis to compare the percentage 
reduction of the area-delay and power-delay product of 
Proposed A over Baseline. It is evident that this reduction is 
significant, where over 50% area-delay reduction and over 35% 
energy-delay reduction is observed when m = 5. These results 
clearly show the power-delay-area benefits of the proposed bit-
width truncation method.  

It can be observed from Table 3 that significant area and 
delay reduction can be achieved through the proposed bit-width 
optimization strategy. When compared to Baseline, Proposed A 
achieves 35.4% reduction in area and about 5.5% reduction in 
power. There is also a significant increase of 45.9% in the 
maximum achievable frequency. The percentage reduction in 
the area-delay product and power-delay product of Proposed A 
over Baseline is 55.8% and 35.2% respectively. When bit-width 
optimization is combined with seamless pipelining (Proposed 
B), there is a significant increase in maximum frequency over 
Baseline. In particular, Proposed B achieves over 2.2X increase 
in maximum frequency over Baseline while still achieving 
about 35.1% area reduction. The slight increase in area 
utilization of Proposed B over Proposed A is due to the 
additional registers that are included for seamless pipelining. 
Due to the incorporation of these registers and higher operating 
frequency, the power consumption of Proposed B is higher than 
Baseline. However, the significant reduction in the critical path 
delay of Proposed B has resulted in a high area-delay product 
reduction of about 70.9% over Baseline. The power-delay 
product reduction of Proposed B over Baseline is about 35.7%.   

Based on these results, it is evident that the proposed 
optimization strategies have led to significant power-delay-area 
gains of the HCD architecture without compromising heavily 
on the accuracy (in most cases the proposed implementation has 
higher repeatability rate than Baseline). Both Proposed A and 
Proposed B have lower area utilization, lower critical path 
delay and higher energy efficiency than Baseline. Columns 7 
and 8 of Table 3 show that the proposed implementations can 
lead to very high frame processing rates.  

C. FPGA Synthesis Results 

Table 4 compares the FPGA results of the Baseline, 
Proposed A and Proposed B implementations with the work in 
[11][19]. We would like to highlight that the existing work in 
Table 4 were implemented on different Altera devices. In 
general, Baseline, Proposed A and Proposed B requires 
significant lesser number of resources than [11] and [19]. The 
work in [11] truncates the Harris measure to 8 bits, which leads 
to higher operating frequency. However, the authors did not 
provide any theoretical or analytical justification for their 
choice of bit-width truncation. They also did not evaluate the 
impact of their bit-width truncation on the accuracy of corner 
detection. On the other hand, we proposed a methodology that 
leads to effective bit-width truncation without incurring notable 
degradation in accuracy. 

VI. CONCLUSION 

This paper presents a novel method for achieving high 
power-delay-area gains in the HCD architecture by exploiting 
the thresholding step in the algorithm to enable effective 
accuracy and hardware-efficiency trade-offs. The proposed 
method formulates the output error of the algorithm as a 
function of the number of bits that can be truncated at the 
preceding pipeline stages. Using this formulation and the 
maximum error tolerance that is defined by a threshold, the 
entire data-path of the HCD architecture can be streamlined 
with marginal loss in accuracy. We also applied seamless 
pipelining to further increase the throughput of the architecture. 
Repeatability tests are undertaken to demonstrate that the 
optimized HCD architecture produces results with high 
accuracy, and a FPGA prototype was developed to demonstrate 
the real-time capability of the proposed implementation. The 
methods proposed in this paper can be applied to numerous 
computer vision algorithms that rely on thresholding. 
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