
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 1

Abstract—High-speed corner detection is an essential step in

many real-time computer vision applications, e.g. object
recognition, motion analysis and stereo matching. Hardware
implementation of corner detection algorithms such as the Harris
corner detector (HCD) has become a viable solution for meeting
real-time requirements of the applications. A major challenge lies
in the design of power, energy and area efficient architectures that
can be deployed in tightly constrained embedded systems while
still meeting real-time requirements. In this paper, we proposed a
bit-width optimization strategy for designing hardware-efficient
HCD that exploits the thresholding step in the algorithm to
determine interest points from the corner responses. The proposed
strategy relies on the threshold as a guide to truncate the bit-
widths of the operators at various stages of the HCD pipeline with
only marginal loss of accuracy. Synthesis results based on 65-nm
CMOS technology show that the proposed strategy leads to power-
delay reduction of 35.2%, and area reduction of 35.4% over the
baseline implementation. In addition, through careful retiming,
the proposed implementation achieves over 2.2 times increase in
maximum frequency while achieving an area reduction of 35.1%
and power-delay reduction of 35.7% over the baseline
implementation. Finally, we performed repeatability tests to show
that the optimized HCD architecture achieves comparable
accuracy with the baseline implementation (average decrease of
repeatability is less than 0.6%).

Index Terms—Corner detection, hardware acceleration, VLSI,
embedded vision

I. INTRODUCTION

EAL-time computer vision algorithms are extensively used
in a wide range of applications such as vision-based

navigation for image-guided medical interventions [1],
navigation of unmanned vehicles [2] and robots [3], video
encoding on unmanned aerial vehicles [4], video tracking [5]
and visual SLAM [6]. A fundamental step in these applications
is the detection of corners which represent identifiable anchor
points in the image. Corners are used for visual odometry,
stereo matching, optical flow computation, object tracking and

Manuscript submitted February 11, 2017.
Bhavan A. Jasani, was with School of Computer Science and Engineering,

Nanyang Technological University, Nanyang Avenue, Singapore. He is now
with Carnegie Mellon University, Pittsburgh, USA (e-mail:
bhavan.jasani@gmail.com).

Siew-Kei Lam is with School of Computer Science and Engineering,
Nanyang Technological University, Nanyang Avenue, Singapore (e-mail:
siewkei_lam@pmail.ntu.edu.sg).

as robust image representation when combined with feature
descriptors for object recognition. Hence, it is important to have
efficient implementation of the corner detection operations for
deployment in embedded systems which have stringent
performance, power, and resource constraints.

Several corner detectors have been proposed in the literature
[7][8] and comparative evaluations have shown that the Harris
corner detector (HCD) [9] achieves some of the best results
[8][10]. The HCD is also the most widely used feature detection
algorithm due to its robustness in detecting corners in noisy
images [11]. However, the computationally intensive
operations in the algorithm incurs a performance bottleneck and
significant power consumption on general purpose
microprocessors [11]. This is aggravated by fact that corner
detectors contribute to a large portion of the overall runtime in
many computer vision processes. For example, corner detectors
are used for computing the ORB feature descriptor in visual
SLAM [12]. The runtime of ORB computation contributes to
over a third of the real-time tracking process. The work in [13]
reported that the Harris algorithm contributes to over 36% of
the execution time for stereo correspondence.

There are some recent attempts to reduce the computational
complexity of corner detection algorithms such that they can be
realized on embedded processors [14]-[16]. These techniques
typically rely on pruning the search space for corners using
simple approximations before applying a more complex corner
measure step to evaluate the candidate set. While it has been
shown that the method proposed in [14] achieves substantial
speedup over the conventional algorithms, they are still unable
to meet the power, performance, and area requirements of real-
time embedded vision applications when realized on software-
based platforms.

Motivated by the need to meet real-time requirements,
hardware implementations of corner detection algorithms have
been proposed [17]-[20]. These techniques often exploit the
inherent parallelism in the corner detectors and find a
reasonable trade-off between the number of line buffers and the

Pramod K. Meher is with School of Computer Science and Engineering,
Nanyang Technological University, Nanyang Avenue, Singapore (e-mail:
ASPKMeher@ntu.edu.sg).

Meiqing Wu is with School of Computer Science and Engineering, Nanyang
Technological University, Nanyang Avenue, Singapore (e-mail:
meiqingwu@ntu.edu.sg).

Copyright © 2017 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

Threshold-Guided Design and Optimization for
Harris Corner Detector Architecture

Bhavan A. Jasani, Siew-Kei Lam, Member, IEEE, and Pramod Kumar Meher, Senior Member, IEEE,
and Meiqing Wu

R

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2

computational resources to manage the resource utilization
while ensuring high throughput and acceptable result quality.
However, there has been little effort undertaken to investigate
data-path optimizations for achieving power-delay-area gains.
Reducing power and energy consumption is particularly
important given the increasing use of complex computer vision
applications on battery-operated embedded devices [21]-[23].

Our study reveals that the complexity of the operators in the
HCD data-path increases notably from one pipeline stage to the
next due to bit-width aggregation. The HCD algorithm
computes the corner response for every pixel in the image, and
the pixel position is considered a corner if the corresponding
corner response exceeds a given threshold. The bit-width of the
Harris corner response is about 6 times larger than the input
pixel bit-width. We propose a novel bit-width optimization
strategy for hardware-efficient HCD implementation based on
the intuition that the errors arising from bit-width truncation
that are lesser than the threshold, will not result in loss of
accuracy. As such, the threshold can be used to determine the
bit-width truncation at various stages in order to achieve power-
delay-area gains while guaranteeing the robustness of the
implementation. Synthesis results based on 65-nm CMOS
technology show that the proposed strategy can lead to
significant power-delay-area gain over the baseline algorithm
without bit-width truncation. To the best of our knowledge, the
proposed strategy is the first to exploit the threshold value for
reliably optimizing the bit-width in hardware realizations of
computer vision algorithms.

The throughput of the HCD architecture can be further
increased through pipelining. However, classical retiming
methods that rely on discrete timing models of the operators do
not lead to efficient pipelining. The proposed bit-width
optimization strategy facilitates bit-level estimation of the
propagation delays across different paths of the HCD
architecture for accurate estimates of the critical path. This
provides a means for applying pipelining at finer granularity to
the HCD architecture, which leads to significant improvement
in the throughput and power-delay efficiency. While we only
focused on HCD in this paper, the proposed strategies can be
applied to a wide range of computer vision algorithms (e.g.
edge detection and object detection) that employs thresholding
to obtain results.

The rest of the paper is organized as follows. Section II
discusses previous work on hardware implementation of the
HCD algorithm and existing techniques on bit-width
optimization. Section III provides a brief overview of the HCD
algorithm and the baseline hardware implementation. Section
IV describes the proposed bit-width optimization strategy and
the optimized hardware implementation of HCD. We also show
that the performance of the optimized HCD implementation can
be further improved through seamless pipelining using the
connected timing model. In Section V, we evaluate the accuracy
of the proposed hardware implementations using repeatability
tests and provide the synthesis results to demonstrate the power-
delay-area gains of the proposed strategy. We conclude the
paper in Section VI.

II. RELATED WORK

In this section, we discuss existing work on hardware
implementations of HCD and previously reported bit-width
optimization strategies. At the end of this section, we list the
main contributions of this paper.

A. Harris Corner Detector Architectures

Hardware implementations of HCD have been proposed on
ASIC [24], FPGA [20][25][26], cell processor [27], and SIMD
architecture [28]. The HCD algorithm computes an auto-
correlation matrix for each pixel using the first-order
derivatives of the intensity values and this matrix represents the
degree of intensity variations in different directions around the
corresponding pixel. A complex corner measure computation is
then performed for every pixel in the image. This step is highly
compute-intensive, and becomes a bottleneck for real-time
vision tasks. In [29], a modified number representation for the
corner response is used in custom instructions on the NIOS II
processor. In [30], a hardware implementation that performs
HCD on a rank transform image instead of the original image is
presented.

In [17], a frame buffer based approach is described in which
every individual step of the HCD algorithm is sequentially
carried out over the full image frame. This requires storing
intermediate data of the entire frame. Multiple image regions
can be processed separately in parallel which would allow very
high operating frequency at the cost of large memory
requirements. In [11][18]-[20], row buffer based hardware
implementation of the HCD is employed, in which image is
locally processed. A small scanning window is utilized to
determine whether the center image pixel is a corner or not. This
approach requires only a few row buffers. Since all the
sequential steps of HCD algorithm are performed locally rather
than over the complete image, the intermediate data can be
stored in local registers which results in low storage
requirements but at the cost of increase in latency. In [19], a
visual pipeline architecture is proposed based on row buffers
which is a combination of parallel and pipelined architecture to
achieve a higher speed. Power, speed and area trade-offs have
been previously explored for the row buffer approach by
varying the scanning window size and number of row buffers.
The work in [18] compared the resource utilization and speed
of two architectures with varying scanning window size and
different row buffer configurations.

Since many computer vision applications employing corner
detectors run on tightly constrained embedded systems e.g.
mobile robots, mobile devices, UAVs, etc., there is a need to
investigate design techniques that not only leads to real-time
computation but also results in low power and energy efficient
solutions. However, existing hardware implementations of
corner detectors often only investigate area-delay trade-offs
between the number of row buffers and computational
resources, while neglecting data-path optimizations that can
potentially lead to low power or energy efficient realizations.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 3

Ix

Ix

x

x

x

x

x

x

x

x

x >>1

>>1

>>1

Ix
2

Iy
2

IxIy(Ix+Iy)
2

w(x)

w(x)

w(x)

.

.

.

.

.

.

.

.

.

a

b

c

X

X x

k=0.0625

x

R

n

n+3

n+3

n+4

2(n+2)

2(n+3) 2(n+3)+1 2(n+3)

2(n+2)

2(n+2)

4(n+2)

4(n+3)

2(n+2)+1

2(2(n+2)+1)

n

n

n

n

Iy/32 2(2(n+2)+1)‐4

4(n+3)+1

Gradient
Computation

Product of
Gradients

Gaussian
Smoothing

Corner
Response

Thresholding
and Non‐
Maximal

Suppression

Corner

NMS

Row Buffers

n

p(x,y)

T

2(n+3)

2(n+2)

Fig. 1: Baseline HCD architecture with conservative bit-widths (each square box represents a register).

B. Bit-width Optimization

Bit-width optimization is an effective approach for reducing
the hardware complexity by streamlining the data-paths using
custom bit-width operators [31]-[35]. This can lead to large
savings in area resources and power consumption. The
challenge is to identify suitable bit-widths for each operator
such that the overall implementation can still produce results
with acceptable quality. The work in [11] truncates the Harris
measure to 8 bits for more efficient hardware implementation,
but did not provide any theoretical or analytical justification for
the choice of bit-width truncation. An extra Gaussian filtering
is incorporated between the Harris corner response computation
and non-maximal suppression to reduce the resulting error due
to saturation, which incur additional hardware resources. This
work did not evaluate the impact of their bit-width truncation
on the accuracy of the output. Most of the existing methods for
determining optimal operator bit-widths of a given algorithm
rely on methods that are based on interval arithmetic [36][37]
and affine arithmetic [38]-[40]. Interval arithmetic assumes all
values of arguments vary independently leading to drastic
overestimation of the range. Affine arithmetic based methods
overcome the limitations of interval arithmetic by providing
tighter bounds on the range. The work in [40], which employs
affine arithmetic, first calculates the ranges of all the
intermediate signals (after each arithmetic operation) and
output signals based on the range of input signals. This
information is then used for determining the optimal bit-widths
at every stage in the pipeline. Such an approach thus requires
computations that are proportional to the number of arithmetic
operations and any changes in the range of inputs requires entire
re-computation. Exploring bit-width optimizations for varying
ranges of the inputs (due to bit-width truncations) to meet the
desired accuracy can therefore be a laborious process. In
addition, non-affine invariant arithmetic operations like
multiplication and division in which the resulting output is not
in affine form, is approximated to an affine form. This can result
in estimation error during bit-width truncation. In addition, this
error can be propagated through the pipeline stages and
eventually result in high inaccuracy at the output.

Our approach for finding optimal bit-width overcomes the
shortcomings of interval arithmetic and affine arithmetic by
providing an accurate estimation of truncation errors without
relying on approximation. In addition, our approach requires
only a one-time computation for deriving error equations that
help determine the optimal bit-width to meet a desired
accuracy. As such, the proposed method avoids the laborious
effort required by affine arithmetic for determining the bit-
width truncations of different input ranges. To the best of our
knowledge, this work is the first to exploit the thresholding step
found in many computer vision algorithms to optimize the
operator bit-widths. Since the thresholding step effectively
filters results that do not meet the given threshold, we can use
the threshold value to guide bit-width truncation without
incurring unacceptable loss of accuracy.

C. Main Contributions

The main contributions of this work are summarized as
follow:
 To the best of our knowledge, this is the first work to

demonstrate the power-delay-area advantages of bit-width
optimization in corner detector architectures.

 We propose a novel threshold-guided bit-width
optimization strategy for the HCD that enables effective
accuracy and hardware-efficiency trade-offs. Based on the
given threshold, the proposed strategy first rapidly
identifies an initial bit-width optimized solution for the
HCD pipeline that does not lead to accuracy loss. The
initial solution is then further refined to obtain a final
truncated bit-width solution that incurs marginal accuracy
loss, while achieving large power-delay-area gains. It is
worth mentioning that the proposed strategy can be easily
adapted to other computer vision algorithms that employ
thresholding (e.g. edge detection and object detection).

 We conducted detailed estimation of propagation delay at
the critical path of the proposed HCD and performed
efficient pipelining to further reduce the critical path delay
and improve the throughput rate.

 Repeatability tests are undertaken to demonstrate that the
optimized HCD architecture produces results with high
accuracy.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 4

III. BASELINE ARCHITECTURE FOR HCD

The HCD algorithm performs corner detection based on a
local auto-correlation function that is approximated by matrix
M within a small window W of each pixel ሺݔ, ሻ as shown inݕ
Eq. (1). ܫ௫	and ܫ௬ are the horizontal and vertical gradients, and
 ሻ is the Gaussian weight function. The two eigenvalues ofݔሺݓ
M, i.e. λ1 and λ2, indicate the intensity change in the window W
centered on ሺݔ, ,ݔሺ	,ሻ. Specificallyݕ ሻ is a corner if both theݕ
eigenvalues are large.

ܯ ൌ ቈ
∑ ௫ܫሻݔሺݓ

ଶ
௪ ∑ ௬௪ܫ௫ܫሻݔሺݓ

∑ ௬௪ܫ௫ܫሻݔሺݓ ∑ ௬ܫሻݔሺݓ
ଶ

௪
 ൌ ቂܽ			ܾ

ܾ			ܿ
ቃ (1)

To avoid explicit computations of the eigenvalues, the HCD

combines the eigenvalues into a single corner measure R as
shown in Eq. (2), where k is an empirical constant and is usually
set between 0.04 and 0.06. A threshold T is applied on the
corner response to discard the obvious non-corners. The pixels
with the highest corner response are then selected as corners
after applying non-maximal suppression.

ܴ ൌ ଵߣ ∙ ଶߣ െ ݇ ∙ ሺߣଵ ଶሻଶߣ

							ൌ detሺܯሻ െ ݇ ∙ ሻܯଶሺ݁ܿܽݎݐ
																				ൌ ሺܽܿ െ ܾଶሻ െ ݇ ∙ ሺܽ ܿሻଶ (2)

Fig. 1 shows the baseline HCD architecture. We assume a

single input pixel of n-bit (in our implementation n = 8 for
grayscale image) arrives at each clock cycle. Five row buffers
as shown in Fig. 2 are concatenated in the form of FIFO delay
buffers to cache the incoming pixels. The size of each row
buffer is equivalent to the horizontal resolution of the image,
and hence each row buffer effectively delays the input by one
row. The pixels at the tail end of each row buffer are shifted into
the pipeline stages.

Fig. 2: Row buffers to cache incoming pixels.

The HCD architecture consists of the following five pipeline
stages:
 Gradient Computation: The first pipeline stage computes

the horizontal and vertical gradients ܫ௫ and ܫ௬ of the
incoming pixels from the row buffers. The gradient
computation is performed on a 5x3 neighborhood of pixels.
This allows for simultaneous computations of three sets of
 ௬ values (corresponding to the pixels in the middleܫ ௫ andܫ
column registers) at every clock cycle. In Fig. 1, the top
block of the gradient computation stage computes the ܫ௫
gradients whereas the bottom block computes the ܫ௬
gradients. Note that the first column registers in the top and

bottom blocks (highlighted in pink) are common and
hence, the ܫ௬ computation block only requires 6 registers.

 Product of Gradients: The second pipeline stage computes
the product of gradients to generate ܫ௫

ଶ, ܫ௬
ଶ and ܫ௫ܫ௬. The

multiplication operations for computing ܫ௫ܫ௬ can be
reduced to less complex squaring, subtraction and 1-bit
shift operations by utilizing the results of ܫ௫

ଶ and ܫ௬
ଶ as

shown in Eq. (3). Three sets of ܫ௫
ଶ, ܫ௬

ଶ and ܫ௫ܫ௬ values are
generated in each clock cycle in this pipeline stage.

௬ܫ௫ܫ ൌ
ሺூೣାூሻమିூೣ

మିூ
మ

ଶ
 (3)

 Gaussian Smoothing: Gaussian smoothing is applied to the

product of gradients in this stage to produce a, b and c as
shown in Eq. (1). This is achieved by caching the product
of gradients using three sets of 3x3 registers and applying
the Gaussian weight function	ݓሺݔሻ to compute a, b and c
in parallel, where ݓሺݔሻ ൌ 0.0625 ∙
ሾሺ1	2	1ሻሺ2	4	2ሻሺ1	2	1ሻሿ்.

 Corner measure: The fourth pipeline stage computes the
Harris corner measure R as shown in Eq. (2). Similar to the
implementation in [17], we have approximated the value of
k to be 0.0625 (1/16) so that constant shift operation can be
used in place of a multiplier.

 Non-Maximal Suppression: In the final pipeline stage, the
corner response R is first compared with a threshold T. If
the corner measure is less than T, R is set to 0 (this avoids
unnecessarily storing negative corner responses which are
non-corners), otherwise the original value of R is retained.
The corner responses are then cached using three row
buffers as the non-maximal suppression (NMS) operation
requires a 3x3 pixel region whereas only a single output is
produced at the Corner Response stage. The NMS
operation determines whether the center pixel of the 3x3
region is a corner or not by comparing its corner response
to the corner responses of its 8 adjacent pixels. Fig. 3 shows
the architecture of the NMS pipeline stage.

Fig. 3: Thresholding and non-maximal suppression.

IV. PROPOSED IMPLEMENTATION

It can be observed from the baseline HCD architecture in Fig.
1 that generally the operator bit-widths increase notably from
one pipeline stage to the next due to the multiplication and
addition operations. Specifically, multiplication leads to
doubling of the operand bit-widths while addition results in an
additional bit. For example, using the conservative bit-width
assignment, if the bit-width of the pixel n = 8 (for gray scale
images), the Harris corner measure R would be 45 bits wide.
This is about six times the size of the input pixels.

Row buffer

Row buffer

Row buffer
Input pixel
stream

n

n

n
n

Row buffer

Row buffer

n

n

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 5

TABLE 2: ERROR PROPAGATION EQUATIONS AT EACH PIPELINE STAGE DUE TOM-BIT TRUNCATION AT THE GRADIENT

COMPUTATION STAGE
Pipeline Stage Error Propagation Equations

Gradient Computation
௫ܫ∆ ൌ 2 െ 1
௬ܫ∆ ൌ 2 െ 1

Product of Gradients

௫ܫ∆
ଶ ൌ 2 ∙ |௫ܫ| ∙ ሺ∆ܫ௫ሻ

௬ܫ∆
ଶ ൌ 2 ∙ หܫ௬ห ∙ ሺ∆ܫ௬ሻ

௬ܫ௫ܫ∆ ൌ ට൫ܫ௬ ∙ ௫൯ܫ∆
ଶ
 ൫ܫ௫ ∙ ௬൯ܫ∆

ଶ

Gaussian Smoothing
∆ܽ ൎ ௫ܫ∆

ଶ
∆ܾ ൎ ௬ܫ௫ܫ∆
∆ܿ ൎ ௬ܫ∆

ଶ

Corner Response

∆ܴ ൌ ඥሺ∆ܴଵሻଶ ሺ∆ܴଶሻଶ ሺ∆ܴଷሻଶ

	 ∆ܴଵ ൌ ඥሺܿ ∙ ∆ܽሻଶ ሺܽ ∙ ∆ܿሻଶ
						∆ܴଶ ൌ 2 ∙ |ܾ| ∙ ∆ܾ

	 ∆ܴଷ ൌ ሺܽ ܿሻ ∙ ሺ
ඥሺ∆ܽሻଶ ሺ∆ܿሻଶ

8
ሻ

The significant bit-width increase implies that the
complexity of the operators in the data-path increases notably
from one pipeline stage to the next. Bit-width optimization can
lead to significant reduction in computational resources, power
reduction and increase in maximum operating frequency. The
challenge lies in determining suitable bit-width truncation that
will not compromise on the quality of results. However, none
of the previously reported hardware implementation of corner
detectors has addressed this challenge. In this section, we
present a novel approach to determine the optimal bit width of
the HCD based on the accuracy requirement, which is governed
by the threshold value used in the thresholding step of the
algorithm.

A. Threshold-Guided Bit-width Truncation

As discussed in the previous section, the Harris corner
measure R for every pixel in the image will be compared with a
threshold T in the final pipeline stage. This thresholding step is
used to determine if the pixel is a candidate corner, i.e. pixels
with R > T are candidate corners, whereas pixels that do not
meet the thresholding criteria are ‘filtered’ by setting their
corner response R to 0. The threshold T used in HCD is typically
a very large positive value (e.g. in the order of 1011). Since the
algorithm is concerned with large R values that exceed the
threshold, the least significant bits (LSBs) of R and T can be
removed if they do not affect a change in the thresholding
decision. Specifically, if the maximum error in R (∆ܴ), that is
incurred by truncating the bit-width does not exceed the
threshold T (see Eq. (4)), then there will be no accuracy loss.
We define	∆ܴ as the output error and the inequality in Eq. (4)
as the maximum output error tolerance for HCD.

max	ሺ∆ܴሻ ൏ ܶ (4)

Since bit-widths of the operators increase in a systematic

fashion at every step of the algorithm, rather than truncating the
LSBs of just the Harris corner measure, a more effective
approach is to perform bit-width truncation of all the operators
in the earlier pipeline stages while ensuring that the error
propagation to R still satisfy Eq. (4). This can be achieved by

first formulating	∆ܴ as a function of m, which is the number of
bits that is truncated at output of the first pipeline stage (i.e.
Gradient Computation). Based on this formulation, we can then
determine maximum number of m bits to be truncated at the first
pipeline stage which will influence the bit-width truncation at
the subsequent stages up to R, such that Eq. (4) is satisfied. As
the error produced at the output of each pipeline stage is
propagated from the error at the inputs and the error due to bit-
width truncation of the operators, we need to derive the error
propagation equations of each pipeline stage in order to
determine ∆ܴ, the resultant error in Harris measure.

TABLE 1: ERROR ANALYSIS OF COMMON OPERATIONS
Equation Error

ܣ ൌ ܺ ܻ െ ܣ∆ ܼ ൌ ඥሺ∆ܺሻଶ ሺ∆ܻሻଶ ሺ∆ܼሻଶ

ܣ ൌ
ܺ. ܻ
ܼ

ܣ∆
|ܣ|

ൌ ඨ൬
∆ܺ
ܺ
൰
ଶ

 ൬
∆ܻ
ܻ
൰
ଶ

 ൬
∆ܼ
ܼ
൰
ଶ

ܣ ൌ ܿ. ܣ∆ ܺ ൌ |ܿ|. ∆ܺ

ܣ ൌ ܺ
ܣ∆
|ܣ|

ൌ |݊|.
∆ܺ
|ܺ|

	ܣ ൌ ݂ሺܺ, ܻ,… ሻ

ܣ∆

ൌ ඨ൬
ܣ∆
∆ܺ

. ∆ܺ൰
ଶ

 ൬
ܣ∆
∆ܻ

. ∆ܻ൰
ଶ

⋯

We use the error equations in Table 1 to derive the error

propagation between the pipeline stages of the HCD
architecture. Using basic differential calculus [41], one can
derive equations for error in output due to error or uncertainty
in the inputs of any function. Table 1 provides the error analysis
for common arithmetic operations, which shows the error in
output A due to uncertainty or error in the inputs for arithmetic
operations on operands X, Y, Z, n, and constant c. The last
equation of Table 1 shows the general equation based on
differential calculus for finding error of an arbitrary function.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 6

The error propagation equations at each pipeline stage that
precede R are shown in Table 2. It can be observed that the error
originating from the truncation of m bits in the first pipeline
stage (Gradient Computation) propagates through all the
intermediate stages to output R of the Corner Response stage to
produce ∆ܴ. For the case of Gaussian smoothing, the equations
shown are approximated (actual equations are used in our
experiments). The actual equations are complex as they depend
on errors and values of variables of neighboring pixels. Based
on these error propagation equations, we can determine the
largest value of m such that Eq. (4) is satisfied. Next, we will
describe our methodology for identifying suitable bit-width
truncations at the various pipeline stages based on the principles
discussed in this subsection.

B. Methodology

Fig. 4 illustrates the proposed methodology for bit-width
optimization. Given an algorithm, the first step of the
methodology derives the error propagation equations to the
input of the thresholding process (e.g. Table 2) using the error
analysis in Table 1. Next, the maximum output error tolerance
(e.g. Eq. (4)) is defined based on the given threshold value.
Based on this, the maximum number of bits (i.e. m) that can be
truncated at the first stage of the algorithm (e.g. the first pipeline
stage of the HCD implementation) is determined. This can be
achieved in an iterative manner by evaluating incremental
values of m starting from 1 on sample images until the
maximum output error tolerance is violated. It is worth
mentioning that this analysis does not have to be repeated in
subsequent stages of the pipeline to determine the number of
bits to be truncated. At the end of third step, the optimal bit-
width truncation at the various stages of the algorithm can be
determined while ensuring no accuracy loss. The fourth step of
the methodology (dotted box in Fig. 4) is an optional step to
further increase the value of m for further bit-width truncation
and analyze the resulting error through empirical evaluations
using sample images to perform trade-offs between the
accuracy and bit-width optimization.

Fig. 4: Proposed methodology for bit-width optimization

The proposed methodology in Fig. 4 is applied to the HCD

implementation, and the optimal value of m is found to be 3
(determined from Step 3 of Fig. 4). This means that if we
truncate 3 bits at the first pipeline stage in Fig. 1 (Gradient
Computation), and based on this truncate the bits proportionally
in the subsequent pipeline stages leading to R, we will achieve
a streamlined data-path that will not introduce accuracy loss.
Note that Step 3 of the methodology can be performed rapidly
without the need for comprehensive error analysis. The fourth
step of the methodology is undertaken for evaluating the

accuracy trade-offs when m is increased beyond 3. For the HCD
implementation, we use the repeatability criteria [8] (discussed
in the next section) to evaluate the accuracy trade-offs. We
empirically found that if an additional 2 bits is truncated from
the image gradients (i.e. m = 3 + 2 = 5), the average accuracy
degrades by only 0.57%. This effectively truncates 20 LSBs of
R, which is equivalent to removing 45% of bits in the original
corner measure. Fig. 5 compares the number of bits in the
baseline implementation and the proposed implementation
(after bit-width optimization with m = 5) at the output of the
HCD pipeline stages. As shown in Table 3 for n = 8, an average
of 45% bit-width reduction is achieved at each pipeline stage.

Fig. 5: Bit-width truncation at each pipeline stage (dotted lines show
optimized bit-width).

Fig. 6 shows the number of bits m that can be truncated from
the gradient computation block as a function of the threshold T.
While the plot in Fig. 6 is obtained based on the “graf” image
set in [42], it shows a general relationship between m and T. As
T increases, the number of bits that can be truncated without
affecting accuracy also increases. This confirms our hypotheses
that a higher threshold T enables more bits to be truncated
without compromising on accuracy. Fig. 6 also shows a step
like behavior. This implies that there is a range of threshold T
with a fixed value of m, i.e. bits that can be truncated without
sacrificing accuracy. Such analysis enables us to determine a
suitable threshold T to use (which impacts the number of
corners generated) for a given set of images, that can provide
the desired power-delay-area trade-offs.

TABLE 3: BIT-WIDTH COMPARISON BETWEEN BASELINE AND

PROPOSED IMPLEMENTATION FOR N = 8
Pipeline Stage Baseline Proposed

Gradient
Computation

11 6

Product of
Gradients

22 12

Gaussian
Smoothing

22 12

Corner Response 45 25

Fig. 6: Number of bits m that can be truncated in the first pipeline stage
as a function of threshold T.

Derive maximum output
error tolerance
(e.g. Eq. (4))

Derive error propagation
equations for intermediate
stages of the algorithm

(e.g. Table 2)

Threshold(s)

Identify maximum m bits
that can be truncated at

the first stage such that the
maximum output error
tolerance is satisfied

Increase m and perform
error analysis through
empirical evaluations

Algorithm

Sample
images

Step 1

Step 2

Step 3

Step 4

Gradient
Computation

Product of
Gradients

Gaussian
Smoothing

Corner
Response

NMS

n+3 2(n+3) 4(n+3)+12(n+3)

(n+3)‐5 2(n+3)‐10 2(n+3)‐10 4(n+3)+1‐20

0

1

2

3

4

5

6

7

5.1E+11 5.51E+12 1.051E+13

N
o

. o
f

b
it

s
tr

u
n

ca
te

d
 (m

)

Threshold (T)

Relationship between m and T

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 7

Fig. 8: Two-stage pipelining of Corner Response

C. Seamless pipelining

The bit-width optimization strategy discussed in the earlier
sub-sections has led to significant reduction in the area and
power consumption. In order to further increase the throughput
of the architecture, we perform bit-level estimation of the
propagation delays across different paths for accurate estimate
of the critical path. Besides, we identify efficient feed-forward
cut-sets to reduce the critical path to a minimum [43].

As shown in dotted red line in Fig. 7, the critical path of the
baseline architecture is ܶ ெ்ܶ ܶ where ܶ is the
delay of a 10-bit adder, ெ்ܶ is the delay of a 11-bit multiplier
and ܶ is the delay of a 3-input 24-bit subtractor. ܶ can be
approximated to be 9 ∙ ிܶ ிܶ, where ிܶ is the delay of a
full adder and ிܶ is the delay required by a full adder to
generate the output carry. ܶ can be approximated to be 23 ∙
ிܶ 2 ∙ ிܶ based on the connected timing model discussed

in [43]. As such, we need to perform pipelining within the 11-
bit multiplier in order to achieve effective register balancing.
As explained in [44], it is not possible to achieve effective
pipelining using array multipliers based on carry propagate
adders. Hence, we have utilized the Wallace tree multiplier in
our design.

Fig 7: Critical path of HCD architecture (after bit-width optimization)

The proposed two-stage pipelining on the Wallace multiplier

is shown in Fig. 8. It can be observed that pipeline registers are
inserted along the line L1→L2→L3→L4 to partition the
critical path of the Corner Response stage into two pipeline
stages such that the critical path delay is divided into almost two
equal halves. The first pipeline stage consists of the 10-bit adder

followed by a carry save reduction of the Wallace multiplier
and addition of 5 lower carry and sum bits. The critical path of
the first pipeline stage is ሺ9 ∙ ிܶ ிܶሻ ሺ4 ∙ ிܶ ுܶሻ
ሺ ுܶ 5 ∙ ிܶሻ, where ுܶ is the delay of a half adder. The
second pipeline stage consists of addition of 10 upper carry and
sum bits and the 3-input 24-bit subtractor. The critical path
delay of the second pipeline stage is ሺ9 ∙ ிܶ ிܶሻ ሺ23 ∙
ிܶ 2 ∙ ிܶሻ. The other multipliers along the non-critical

paths of the Corner Response stage have also been pipelined in
a similar manner.

V. EXPERIMENTAL RESULTS

In this section, we will provide experimental results for the
proposed implementation in terms of accuracy and hardware
synthesis results.

A. Accuracy Evaluation

It is paramount to perform accuracy evaluation of the
proposed architecture as bit-width optimization may affect the
accuracy of corner detection. This may render the algorithm
unsuitable for certain applications e.g. simultaneous
localization and mapping for autonomous vehicles which
involve tracking of features over consecutive frames. It is
noteworthy that most of the previous works on hardware
implementation of corner detectors do not provide quantitative
accuracy evaluation of their implementations. In this paper, we
have adopted the repeatability criteria [8] to compare the
accuracy of the baseline and proposed implementations. The
repeatability criterion is based on the notion that detection of
corners should be invariant to imaging conditions e.g. blurring,
zooming, and rotation of the scene. An accurate feature detector
should be robust to the changes in imaging conditions and
hence, should be able to detect features at close proximity
between images with changes in viewpoint. The repeatability
rate is defined as the ratio of the number of repeated features
between two images within certain pixel allowance, to the
minimum number of features that are in common region of the
two images of the same scene but with changes in imaging
condition(s).

We have used the image dataset from [42] for the accuracy
evaluation. These challenging datasets contains three sequences
(Boat, Graf and UBC) of images with various image
transformations such as changes in viewpoint, zoom, rotation
and illumination. Each set contains a base image and 5 images,
where image transformation are progressively applied. Some
samples of the images are shown in Fig. 9. The repeatability

5 Stage Carry‐Save Reduction

10‐bit Adder

10

10

a
c

11

HA FA FA FA FA FA FA FA FA FA FA FA FA FA FA HA

24‐bit Subtractor R
25

20

24

a.c

b2

L1 L2

L3 L4

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 8

criteria measure how well the detector match corresponding
corners between the base image and images with
transformations. It is expected that the repeatability
progressively decreases with higher degree of image
transformations.

Fig 9: Image set “Graf”; the top left image is the original and subsequent images
have increasing viewpoint changes.

The results of the repeatability evaluation for the three image

sets are shown in Fig. 10 (a pixel allowance of 1.5 pixels is used
in the evaluations). The threshold T used for all the images
considered is in the order of 1011. Note that the values in the y-
axis denote the percentage repeatability difference between the
proposed architecture and that of the original software
implementation of HCD. The negative difference in Fig. 10
means that the proposed architecture has accuracy degradation.
For most images considered, the proposed architecture resulted
in slightly better repeatability rate i.e. an increase in accuracy
compared to the original HCD algorithm (as indicated by a
positive value of the difference in repeatability) whereas for
others there is a slight decrease in the repeatability rate. It is
evident that the overall difference in repeatability is marginal
for the image set considered, i.e. only 0.57% average reduction
in repeatability. Hence, the proposed architecture has a high
degree of robustness. It is noteworthy that although there’s
about 10% decrease in repeatability between proposed and
original implementation for image 5 of Boat, there is still a high
degree of matched pixels in the original and proposed
implementation. In particular, only 4 out of 69 corners fail to
match between the proposed and original implementation for
this image.

Fig 10: Difference in repeatability rate between proposed implementation and
original HCD implementation.

We also observed that images with highly uniform texture
lead to largest accuracy degradation for the proposed
implementation since bit-width truncation removes the least
significant bits of Harris measure, while only the least
significant bits of the corner measure differ in uniform image
textures. Since corner detectors are typically employed in non-
uniform textured images where corners can be easily
determined, this does not pose as a limitation to the proposed
architecture. In the following sub-section, we discuss the
power-delay-area gains of the proposed architecture.

B. ASIC Synthesis Results

The baseline architecture (Baseline), proposed architecture
with bit-width optimization (Proposed A), and proposed
architecture with bit-width optimization and seamless
pipelining (Proposed B) were implemented using Verilog and
synthesized with Synopsys DC using the TSMC 65-nm CMOS
technology library.

Fig. 11 shows the percentage area, delay and power reduction
of Proposed A over the Baseline when m, the number of bits
truncated at the first stage of the algorithm, is varied from 1 to
5. The power is measured based on the maximum achievable
frequency of each design. It can be observed that the percentage
area, delay and power reduction increases monotonically with
m. The percentage reduction in area and delay is expected since
the bit-width truncation will lead to lesser computational
resources and lower critical path delay. Even though Proposed
A has higher operating frequency, it can still achieve lower
power than Baseline.

Fig 11: Percentage area, delay and power reduction of Proposed A compared
with Baseline with varying m.

Fig 12: Percentage area-delay product and power-delay product reduction of
Proposed A compared with Baseline with varying m.

0

5

10

15

20

25

30

35

40

1 2 3 4 5

Percentage Area, Delay, Power Reduction

Area Reduction (%) Delay Reduction (%) Power Reduction (%)

0

10

20

30

40

50

60

1 2 3 4 5

Percentage Area‐Delay and Power‐Delay Reduction

Area‐Delay Reduction Power‐Delay Reduction

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 9

TABLE 3: SYNTHESIS RESULTS FROM SYNOPSIS DESIGN COMPILER USING TSMC 65-NM LIBRARY

Design Area (Sq um)
Maximum
Frequency

(MHz)

Power
(mW)

Area-Delay
Product

Power-
Delay

Product

Frames per
second for
640 x 480

images

Frames per
second for HD

images
(1280 x 720)

Baseline 1101088.40 224 174 4899843.38 773.23 731 243
Proposed A 710953.53 327 164 2168408.27 500.87 1067 355
Proposed B 714146.01 500 249 1428292.02 497.12 1627 542

TABLE 4: FPGA RESULTS

Design Platform Resolution

Resource Utilization
Maximum
Frequency

(MHz)

Performance
(FPS) LUT-FF/Logic

Elements
Memory
Blocks

DSP Blocks/
Embedded
Multipliers

[19] Altera Cyclone II 640x480 8050 360 29 - 50
[11] Altera Aria V 1024x1024 8624 43 76 232 219

Baseline Altera Cyclone IV 1024x1024 1990 20 33 115 109
Proposed A Altera Cyclone IV 1024x1024 1191 14 15 176 167
Proposed B Altera Cyclone IV 1024x1024 1964 13 9 211 201

Fig. 12 extends the analysis to compare the percentage
reduction of the area-delay and power-delay product of
Proposed A over Baseline. It is evident that this reduction is
significant, where over 50% area-delay reduction and over 35%
energy-delay reduction is observed when m = 5. These results
clearly show the power-delay-area benefits of the proposed bit-
width truncation method.

It can be observed from Table 3 that significant area and
delay reduction can be achieved through the proposed bit-width
optimization strategy. When compared to Baseline, Proposed A
achieves 35.4% reduction in area and about 5.5% reduction in
power. There is also a significant increase of 45.9% in the
maximum achievable frequency. The percentage reduction in
the area-delay product and power-delay product of Proposed A
over Baseline is 55.8% and 35.2% respectively. When bit-width
optimization is combined with seamless pipelining (Proposed
B), there is a significant increase in maximum frequency over
Baseline. In particular, Proposed B achieves over 2.2X increase
in maximum frequency over Baseline while still achieving
about 35.1% area reduction. The slight increase in area
utilization of Proposed B over Proposed A is due to the
additional registers that are included for seamless pipelining.
Due to the incorporation of these registers and higher operating
frequency, the power consumption of Proposed B is higher than
Baseline. However, the significant reduction in the critical path
delay of Proposed B has resulted in a high area-delay product
reduction of about 70.9% over Baseline. The power-delay
product reduction of Proposed B over Baseline is about 35.7%.

Based on these results, it is evident that the proposed
optimization strategies have led to significant power-delay-area
gains of the HCD architecture without compromising heavily
on the accuracy (in most cases the proposed implementation has
higher repeatability rate than Baseline). Both Proposed A and
Proposed B have lower area utilization, lower critical path
delay and higher energy efficiency than Baseline. Columns 7
and 8 of Table 3 show that the proposed implementations can
lead to very high frame processing rates.

C. FPGA Synthesis Results

Table 4 compares the FPGA results of the Baseline,
Proposed A and Proposed B implementations with the work in
[11][19]. We would like to highlight that the existing work in
Table 4 were implemented on different Altera devices. In
general, Baseline, Proposed A and Proposed B requires
significant lesser number of resources than [11] and [19]. The
work in [11] truncates the Harris measure to 8 bits, which leads
to higher operating frequency. However, the authors did not
provide any theoretical or analytical justification for their
choice of bit-width truncation. They also did not evaluate the
impact of their bit-width truncation on the accuracy of corner
detection. On the other hand, we proposed a methodology that
leads to effective bit-width truncation without incurring notable
degradation in accuracy.

VI. CONCLUSION

This paper presents a novel method for achieving high
power-delay-area gains in the HCD architecture by exploiting
the thresholding step in the algorithm to enable effective
accuracy and hardware-efficiency trade-offs. The proposed
method formulates the output error of the algorithm as a
function of the number of bits that can be truncated at the
preceding pipeline stages. Using this formulation and the
maximum error tolerance that is defined by a threshold, the
entire data-path of the HCD architecture can be streamlined
with marginal loss in accuracy. We also applied seamless
pipelining to further increase the throughput of the architecture.
Repeatability tests are undertaken to demonstrate that the
optimized HCD architecture produces results with high
accuracy, and a FPGA prototype was developed to demonstrate
the real-time capability of the proposed implementation. The
methods proposed in this paper can be applied to numerous
computer vision algorithms that rely on thresholding.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 10

REFERENCES
[1] D.J. Mirota, M. Ishii, and G.D. Hager, “Vision-based navigation in image-

guided interventions”, Annual Review of Biomedical Engineering, Vol.
13, pp. 297–319, 2011

[2] S. Ehsan, and K.D. McDonald-Maier, “On-board vision processing for
small UAVs: time to rethink strategy”, Proceedings of the NASA/ESA
Conference on Adaptive Hardware and Systems, 2009

[3] A. Schmidt, M., Kraft, and A. Kasinski, “An evaluation of image feature
detectors and descriptors for robot navigation”, Computer Vision and
Graphics, Vol. 6375, pp. 251–259, 2010

[4] M. Bhaskaranand, and J.D. Gibson, “Low-complexity video encoding for
UAV reconnaissance and surveillance”, Military Communications
Conference, pp. 1633–1638, 2011

[5] S. Gauglitz, T. Hollerer, and M. Turk, “Evaluation of interest point
detectors and feature descriptors for visual tracking”, International
Journal of Computer Vision, Vol. 94, pp. 335–360, 2011

[6] A. Gil, O.Mozos, M.Ballesta, and O.Reinoso, “A comparativeevaluation
of interest point detectors and local descriptors forvisual SLAM”,
Machine Vision and Applications, Vol. 21, pp. 905–920, 2010

[7] T. Tuytelaars, and K. Mikolajczyk, “Local invariant feature detectors: a
survey”, Foundations and Trends in Computer Graphics and Vision, Vol.
3 No. 3, pp. 177-280, January 2008

[8] C. Schmid, R. Mohr, and C. Bauckhage, “Evaluation of interest point
detectors”, International Journal of Computer Vision. Vol. 37, No. 2, pp.
151–172, 2000

[9] C. Harris, M. Stephens, “A combined corner and edge detection”,
Proceedings of The Fourth Alvey Vision Conference, pp. 147-151, 1988

[10] H.Aanæs, A.L. Dahl, and K.S. Pedersen, “Interesting interest points: A
comparative study of interest point performance on a unique data set”,
International Journal of Computer Vision, Vol. 97, No. 1, pp 18-35,
March 2012

[11] P.R. Possa, S.A. Mahmoudi, N. Harb, C. Valderrama, and P. Manneback,
“A Multi-Resolution FPGA-based Architecture for Real-Time Edge and
Corner Detection”, IEEE Transactions on Computers, Vol. 63, No. 10,
pp. 2376-2388, October 2014

[12] R. Mur-Artal, J.M.M. Montiel, and J.D. Tardos, “ORB-SLAM: A
Versatile and Accurate Monocular SLAM System”, IEEE Transactions
on Robotics, Vol. 31, No. 5, October 2015, pp. 1147-1163

[13] V. H. Schulz, F. G. Bombardelli, and E. Todt, “A Harris Corner Detector
Implementation in SoC-FPGA for Visual SLAM”, Latin American
Robotics Symposium, pp. 57-71, September 2016

[14] M. Wu, N.Ramakrishnan, S.-K. Lam and T. Srikanthan, "Low-
Complexity Pruning for Accelerating Corner Detection", IEEE
International Symposium on Circuits and Systems (ISCAS), May 2012,
pp. 1684-1687

[15] N. Ramakrishnan, M. Wu, S.-K. Lam, and T. Srikanthan, “Enhanced
Low-Complexity Pruning for Corner Detection”, Journal of Real-Time
Image Processing, 2014

[16] N. Ramakrishnan, M. Wu, S.-K. Lam, T. Srikanthan, “Automated
Thresholding for Low Complexity Corner Detection”, NASA/ESA
Conference on Adaptive Hardware and Systems, 2014, pp. 97-103

[17] M.F. Aydogdu, M. F. Demirci, C. Kasnakoglu, “Pipelining Harris corner
detection with a tiny FPGA for a mobile robot”,Proc. IEEE International
Conference on Robotics and Biomimetics, ROBIO, 2013

[18] A. Amaricai, C.-E. Gavriliu and O. Boncalo, "An FPGA sliding window-
based architecture Harris corner detector", Field Programmable Logic
and Applications (FPL), 2014 24th International Conference, pp. 1-4

[19] P. Y. Hsiao, C.L. Lu, L.C. Fu “Multilayered Image Processing for
Multiscale Harris Corner Detection in Digital Realization”, IEEE Trans.
On Industrial Electronics, Vol. 57, Issue 5, 2010.

[20] T.L. Chao and K. H. Wong, "An efficient FPGA implementation of the
Harris corner feature detector",14th IAPR International Conference on
Machine Vision Applications (MVA), 2015, pp. 89-93.

[21] A. Petrovai, A. Costea, F. Oniga, and S. Nedevschi, "Obstacle detection
using stereovision for Android based mobile devices", IEEE International

Conference on Intelligent Computer Communication and Processing
(ICCP), 2014

[22] J.M. S´aez, F. Escolano, and M.A. Lozano, "Aerial obstacle detection
with 3D mobile devices", IEEE Journal of Biomedical Health
Information, Vol. 19, No. 1, 74-80, 2015

[23] T. Schops, J. Engel, and D. Cremers, "Semi-dense visual odometry for
AR on a smartphone", IEEE International Symposium on Mixed and
Augmented Reality, 2014

[24] C. Chih-Chi, L. Chia-Hua, L. Chung-Te, S.C. Chang, C. Liang-Gee,
"iVisual: an intelligent visual sensor SoC with 2790fps CMOS image
sensor and 205GOPS/W vision processor", Design Automation
Conference, pp. 90-95, 2008

[25] H. Orabi, N. Shaikh-Husin and U. Ullah Sheikh, "Low cost pipelined
FPGA architecture of Harris Corner Detector for real-time applications",
International Conference on Digital Information Management, 2015

[26] A. Hernandez-Lopez, C. Torres-Huitzil and J.J. Garcia-Hernandez,
"FPGA-based flexible hardware architecture for image interest point
detection", International Journal of Advanced Robotic Systems, Vol. 12,
No. 93, 2015

[27] T. Saidani, L. Lacassagne, S. Bouaziz, T. Khan, "Parallelization strategies
for the points of interests algorithm on the cell processor", Parallel and
Distributed Processing and Applications, Vol. 4742, pp. 104-112, 2007

[28] F. Hosseini, A Fijany, J.-G Fontaine, "Highly parallel implementation of
Harris Corner detector on CSX SIMD architecture", Conference on
Parallel Processing, 2011

[29] S. Piskorski, L. Lacassagne, S. Bouaziz and D. Etiemble, "Customizing
CPU instructions for embedded vision systems", IEEE International
Conference on Application-Specific Systems, Architectures and
Processors, 2007

[30] B. Tippetts, D.-J. Lee and J. Archibald, "An on-board vision sensor
system for small unmanned vehicle applications", Machine Vision
Applications, 23(2), pp. 1-13, 2012

[31] Y. F. Tong, R. A. Rutenbar and D. F. Nagle, “Minimizing Floating-Point
PowerDissipation Via Bit-Width Reduction”, 25th International
Symposium on Computer Architecture, 1998

[32] S. Gupta, A. Agrawal, K. Gopalakrishnan and P. Narayanan,“Deep
Learning with Limited Numerical
Precision”, CoRR, abs/1502.02551, 2015

[33] P. Gysel, M. Motamedi, S. Ghiasi, “Hardware-oriented Approximation of
Convolutional Neural Networks”, CoRR, abs/1604.03168, 2016

[34] A. A. Gaffar, O. Mencer, W. Luk and P. Y. K. Cheung, "Unifying Bit-
width Optimisation for Fixed-point and Floating-point Designs",12th
IEEE Symposium on Field-Programmable Custom Computing Machines,
pp. 79-88, April 2004

[35] A. Gaffar, J. Clarke and G. Constantinides, "PowerBit- Power aware
arithmetic bitwidth optimization", IEEE International Conference on
Field Programmable Technology, pp. 289-292, 2006

[36] R. Cmar, L. Rijnders, P. Schaumont, S. Vernalde and I. Bolsens,“A
methodology and design environment for DSP ASIC fixed
pointrefinement,” Proceedings of ACM/IEEE Design Automation and
Test in Europe Conference, pp. 271–276, 1999

[37] M. Willems, V. Burgens, H. Keding, T. Grotker and H. Meyr,
“Systemlevel fixed-point design based on an interpolative
approach,”Proceedings of ACM/IEEE Design Automation Conference,
pp. 293–298, 1997

[38] D-U. Lee, A. A. Gaffar, O. Mencer and W. Luk, "MiniBit: bitwidth
optimization via affine arithmetic", Proceedings of 42nd Design
Automation Conference, 2005

[39] J. Cong, K. Gururaj, B. Liu, C. Liu, Z. Zhang, S. Zhou and Y. Zou,
“Evaluation of Static Analysis Techniques for Fixed-Point Precision
Optimization”, 17th IEEE Symposium on Field Programmable Custom
Computing Machines, pp. 231-234, April 2009

[40] D.-U. Lee, A. Gaffar, R. Cheung, O. Mencer, W. Luk and G. Constan-
tinides, "Accuracy-Guaranteed Bit-Width Optimization", IEEE

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 11

Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 25, No. 10, pp. 1990-2000, Oct 2006

[41] Harvard University, “A Summary of Error Propagation”, 2007. Available:
http://ipl.physics.harvard.edu/wp-
uploads/2013/03/PS3_Error_Propagation_sp13.pdf

[42] Affine Covariant Features, Available:
http://www.robots.ox.ac.uk/~vgg/research/affine/

[43] P.K. Meher, “On Efficient Retiming of Fixed-Point Circuits”, IEEE
Transactions on VLSI Systems, 2015

[44] P.K. Meher, “Seamless Pipelining of DSP Circuits”, Journal of Circuits,
Systems, and Signal Processing, Vol. 35 Issue 4, Pages 1147-1162, April
2016

Bhavan A. Jasani received a dual
degree consisting of B.E (Hons.)
Electrical & Electronics Engineering
and MSc. (Hons.) Physics from Birla
Institute of Technology & Science,
Pilani, India in 2016. Since then he has
been working as a research staff at
Hardware & Embedded Systems lab at
School of Computer Science &

Engineering, Nanyang Technological University, Singapore.
He has been working on developing real-time, low-power and
hardware efficient pedestrian detection systems based on
FPGA’s and embedded GPU’s. He's research interest lies in
computer vision, machine learning and embedded systems.

Siew-Kei Lam (M’03) received his
BASc, MEng and PhD from School of
Computer Science and Engineering
(SCSE), Nanyang Technological
University, Singapore. He is currently
an Assistant Professor in SCSE and his
research investigates methods for
realizing custom computing solutions in
embedded systems. His current projects
include developing architecture-aware

algorithms for vision-enabled sensing, and design
methodologies for secure and reliable embedded systems.

Pramod Kumar Meher (SM’03)
received the B.Sc. (Hons.) and M.Sc.
degrees in physics, and the Ph.D. degree
in science from Sambalpur University,
Sambalpur, India, in 1976, 1978, and
1996, respectively. He was a Senior
Research Scientist with the School of
Computer Science & Engineering in
Nanyang Technological University,

Singapore during 2013-2016. Previously he was a Senior
Scientist with the Institute for Infocom Research, Singapore
during 2009-2013 and Senior Fellow with the School of
Computer Engineering in Nanyang Technological University,
Singapore during 2005-2009. He was a Reader in Electronics
with Berhampur University, Berhampur, India, from 1993 to
1997, and a Professor of Computer Applications with Utkal
University, Bhubaneswar, India, from 1997 to 2002. He has
contributed nearly 250 technical papers to various reputed

journals and conference proceedings including nearly 80 papers
in IEEE Transactions. He is co-editor of the book "Arithmetic
Circuits for DSP Applications" published by Wiley-IEEE Press.
His current research interests include signal processing, cyber
security, and intelligent computing for smart systems, IoT, and
analytics. Dr. Meher is a fellow of the Institution of Electronics
and Telecommunication Engineers, India and a Senior Member
of IEEE. He was a Speaker for the Distinguished Lecturer
Program of the IEEE Circuits Systems Society from 2011 to
2012. He has served as an Associate Editor of the IEEE
Transactions on Circuits and Systems—II: Express Briefs from
2008 to 2011, the IEEE Transactions on Circuits and Systems—
I: Regular Papers from 2012 to 2013, and the IEEE
Transactions on Very Large Scale Integration Systems from
2009 to 2014. Currently he serves as an Associate Editor of the
IEEE Transactions on Circuits and Systems for Video
Technology and the Journal of Circuits, Systems, and Signal
Processing. He was a recipient of the Samanta Chandrasekhar
Award for excellence in research on engineering and
technology in 1999.

Meiqing Wu received M.S. degree in
Computer Engineering from Peking
University, China in 2009, and her Ph.D.
degree from the School of Computer
Science and Engineering (SCSE),
Nanyang Technological University,
Singapore in 2017. Her current research
interests include stereo vision, motion
analysis, object detection and tracking for

urban traffic scene understanding.

